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1 Introduction

From the OEIS[1]

%I A121707

%S 35,55,77,95,115,119,143,155,161,187,203,

209,215,221,235,247,253,275,287,295,299,

%N Numbers n > 1 such that n^3 divides

Sum_{k=1..n-1} k^n = A121706(n).

%A Alexander Adamchuk, Aug 16 2006

%E Sequence corrected by

Robert G. Wilson v, Apr 04 2011

Additional comments from Thomas Ordowski and
Robert Israel:

• Note that n2 divides
∑n−1

k=1 kn for every odd
number n > 1.

• Conjecture 1: these are the odd numbers n >
1 such that n divides

∑n−1
k=1 kn−1. (proven by

Andrzej Schinzel)
• Conjecture 2: these are the “anti-Carmichael

numbers”: n > 1 such that for every prime p
dividing n, p − 1 does not divide n − 1.

So let

Sn =

n−1
∑

k=1

kn

Tn =
n−1
∑

k=1

kn−1

2 Sn mod n3 for odd n

Since n − 1 is even, pair up the terms of Sn:

Sn =

n−1
∑

k=1

kn

=

(n−1)/2
∑

k=1

kn + (n − k)n

=

(n−1)/2
∑

k=1





n
∑

j=1

(

n

j

)

nj(−k)n−j





The inner sum starts at j = 1 because kn cancels
the j = 0 term.

The j = 2 term is [n(n− 1)/2]n2(−k)n−2, and since
n is odd, the 2 divides n − 1: the term is a multiple
of n3. The subsequent terms are obviously multiples
of n3, and so (modulo n3)

Sn ≡

(n−1)/2
∑

k=1

(

n

1

)

n1(−k)n−1

≡ n2

(n−1)/2
∑

k=1

kn−1

As Ordowski notes, n2 divides Sn for odd n.

That last sum is tantalizingly close to Tn of the con-
jecture 1. When it is a multiple of n, n3 divides Sn,
and n is in A121707.

Let Un = Sn/n2, and consider Un mod n:
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2Un ≡

(n−1)/2
∑

k=1

kn−1 +

(n−1)/2
∑

k=1

kn−1

≡

(n−1)/2
∑

k=1

kn−1 +

(n−1)/2
∑

k=1

(n − k)n−1

≡

(n−1)/2
∑

k=1

kn−1 +

n−1
∑

k=(n+1)/2

kn−1 ≡ Tn

For the second line, k → −k because the exponent
is even; −k → n − k because it’s modulo n.

The modulus is odd, so Tn ≡ 2Un ≡ 0 mod n just
when Un ≡ 0: conjecture 1 defines the odd terms of
A121707. We have only to show that there are no
even terms.

3 Sn for even n

First, a lemma. Let z = 2a be a power of two, and
k be odd. Then kz ≡ 1 mod z. Induce on a:

Basis: it’s plainly true when a = 1, z = 2.

Step: let kz = zx + 1. Then k2z = (kz)2 = z2x2 +
2zx + 1 = 2z((z/2)x2 + x) + 1 ≡ 1 mod 2z.

—

Let 2a be the highest power of two which divides n:
n = m · 2a. So n > a, and the even terms of the Sn

sum are divisible by 2n and by 2a.

There are n/2 odd terms in the Sn sum. When a =
1, they sum to an odd number: Sn is not divisible
by 2, and not by n.

When a > 1, the odd terms can be paired up much
as before:

On =

n−1
∑

k=1,3,5,...

kn

=

n/2−1
∑

k odd

kn + (n − k)n

=

n/2−1
∑

k odd



kn +
n

∑

j=0

(

n

j

)

nj(−k)n−j





Working modulo 2a, the j > 0 terms of the inner
sum vanish, and

On ≡

n/2−1
∑

k odd

kn + (−k)n

≡

n/2−1
∑

k odd

(km)2
a

+ ((−k)m)2
a

≡

n/2−1
∑

k odd

1 + 1

≡ (n/4) · 2 ≡ n/2 ≡ 2a−1

So if n is even, 2a does not divide Sn, nor does m ·
2a = n. Conjecture 1 is correct.

4 The anti-Carmichael conjec-

ture

Again, an anti-Carmichael number is a value n such
that for all primes p dividing n, p−1 does not divide
n − 1. (Ordowski says n > 1; I’m happy to include
n = 1.)

2 − 1 divides n − 1, so anti-Carmichael numbers are
odd.

If n is odd, 3 − 1 divides n − 1; so anti-Carmichael
numbers are not divisible by 3.

—

Let n be an odd number, and let pa be a component
of the factorization of n: n = mpa,m ⊥ p.1

Tn =

n−1
∑

k=1

kn−1

≡

mpa−1
∑

k=1,k⊥p

kn−1 mod pa

≡ m

pa−1
∑

k=1,k⊥p

kn−1 mod pa

because the deleted terms are multiples of pn−1 and
of pa.

4.1 Groups modulo pa

The modulo-pa multiplicative group, G, has those
values from 1 to pa−1 which are coprime to p: there
are pa − pa−1 = |G| of them.

Since p is odd, the group is cyclic. Let g be a gener-
ator of the group.

1Theorem 119 of Hardy&Wright[2] suffices when n is
squarefree.
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That last expression for Tn mod pa can be written

Tn ≡ m
∑

k∈G

kn−1 mod pa

Let h = gp−1, and let H be the subgroup of G gen-
erated by h.

First, h ≡ 1 mod p (Fermat’s little theorem), and
each H element (hx ≡ (gx)p−1) is 1 mod p. There
are pa−1 = |H| of them: all of the 1-mod-p elements
of G. So other powers of g yield other values, not
≡ 1 mod p, and

gk ≡ 1 mod p just if p − 1 divides k.

4.2 p − 1 divides n − 1

If p − 1 divides n − 1, then gn−1 = h(n−1)/(p−1),
an element of H. Those exponents are coprime to
p and to |H|, and so the latter exponentiation just
permutes the H elements. Modulo-pa,

∑

k∈H

k(n−1)/(p−1) ≡
∑

k∈H

k

≡

pa−1−1
∑

j=0

1 + jp

≡ pa−1 + p

pa−1−1
∑

j=0

j

≡ pa−1 + p ·
(pa−1 − 1)pa−1

2

≡ pa−1

In the following sum, the elements of G map to H:
each H receives (p − 1) of the Gs.

Tn ≡ m
∑

k∈G

kn−1

≡ m(p − 1)
∑

k∈H

k(n−1)/(p−1)

≡ m(p − 1)pa−1

≡ −mpa−1 6≡ 0

So pa does not divide Tn.

4.3 p − 1 does not divide n − 1

The elements of G are g0, g1, ..., g|G|−1, and so

Tn ≡ m
∑

k∈G

kn−1 mod pa

≡ m

|G|−1
∑

j=0

(gj)n−1

≡ m

|G|−1
∑

j=0

(gn−1)j

(gn−1 − 1)Tn ≡ m((gn−1)|G| − 1) ≡ m · 0

So pa divides (gn−1−1)Tn. But p−1 does not divide
n−1, and p does not divide gn−1−1: pa divides Tn.

4.4 Conclusion

For odd n, component pa divides Tn just if p−1 does
not divide n− 1. That applies to each component of
the factorization of n.

If a number n > 1 is anti-Carmichael, then n is odd,
and for each component pa dividing n: p − 1 does
not divide n − 1, and so pa divides Tn. Therefore n
divides Tn, and n ∈ A121707.
Other numbers greater than 1 have some p−1 which
divides n − 1, pa and n do not divide Tn, and n 6∈
A121707.

A121707 is the anti-Carmichael numbers except for
n = 1.
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