A121707

Don Reble

2018 August 5

3

Contents

1	Introduction	1
2	$S_n \mod n^3$ for odd n	1
3	S_n for even n	2
4	The anti-Carmichael conjecture	2
	4.1 Groups modulo p^a	2
	4.2 $p-1$ divides $n-1$	3

4.3 p-1 does not divide n-1 4.4 Conclusion \ldots 3

Introduction 1

From the OEIS[1]

- %I A121707 %S 35,55,77,95,115,119,143,155,161,187,203, 209,215,221,235,247,253,275,287,295,299,
- %N Numbers n > 1 such that n^3 divides $Sum_{k=1..n-1} k^n = A121706(n)$.
- %A Alexander Adamchuk, Aug 16 2006
- %E Sequence corrected by Robert G. Wilson v, Apr 04 2011

Additional comments from Thomas Ordowski and Robert Israel:

- Note that n^2 divides $\sum_{k=1}^{n-1} k^n$ for every odd number n > 1.
- Conjecture 1: these are the odd numbers n > 1 such that n divides $\sum_{k=1}^{n-1} k^{n-1}$. (proven by Andrzej Schinzel)
- Conjecture 2: these are the "anti-Carmichael numbers": n > 1 such that for every prime p dividing n, p-1 does not divide n-1.

So let

$$S_n = \sum_{k=1}^{n-1} k^n$$
$$T_n = \sum_{k=1}^{n-1} k^{n-1}$$

$S_n \mod n^3$ for odd n $\mathbf{2}$

Since n-1 is even, pair up the terms of S_n :

$$S_n = \sum_{k=1}^{n-1} k^n$$

= $\sum_{k=1}^{(n-1)/2} k^n + (n-k)^n$
= $\sum_{k=1}^{(n-1)/2} \left[\sum_{j=1}^n \binom{n}{j} n^j (-k)^{n-j} \right]$

The inner sum starts at j = 1 because k^n cancels the j = 0 term.

The j = 2 term is $[n(n-1)/2]n^2(-k)^{n-2}$, and since n is odd, the 2 divides n-1: the term is a multiple of n^3 . The subsequent terms are obviously multiples of n^3 , and so (modulo n^3)

$$S_n \equiv \sum_{k=1}^{(n-1)/2} {n \choose 1} n^1 (-k)^{n-1}$$
$$\equiv n^2 \sum_{k=1}^{(n-1)/2} k^{n-1}$$

As Ordowski notes, n^2 divides S_n for odd n.

That last sum is tantalizingly close to T_n of the conjecture 1. When it is a multiple of n, n^3 divides S_n , and n is in A121707.

Let $U_n = S_n/n^2$, and consider $U_n \mod n$:

$$2U_n \equiv \sum_{k=1}^{(n-1)/2} k^{n-1} + \sum_{k=1}^{(n-1)/2} k^{n-1}$$
$$\equiv \sum_{k=1}^{(n-1)/2} k^{n-1} + \sum_{k=1}^{(n-1)/2} (n-k)^{n-1}$$
$$\equiv \sum_{k=1}^{(n-1)/2} k^{n-1} + \sum_{k=(n+1)/2}^{n-1} k^{n-1} \equiv T_n$$

For the second line, $k \to -k$ because the exponent is even; $-k \to n-k$ because it's modulo n.

The modulus is odd, so $T_n \equiv 2U_n \equiv 0 \mod n$ just when $U_n \equiv 0$: conjecture 1 defines the odd terms of A121707. We have only to show that there are no even terms.

3 S_n for even n

First, a lemma. Let $z = 2^a$ be a power of two, and k be odd. Then $k^z \equiv 1 \mod z$. Induce on a:

Basis: it's plainly true when a = 1, z = 2.

Step: let $k^z = zx + 1$. Then $k^{2z} = (k^z)^2 = z^2 x^2 + 2zx + 1 = 2z((z/2)x^2 + x) + 1 \equiv 1 \mod 2z$.

Let 2^a be the highest power of two which divides n: $n = m \cdot 2^a$. So n > a, and the even terms of the S_n sum are divisible by 2^n and by 2^a .

There are n/2 odd terms in the S_n sum. When a = 1, they sum to an odd number: S_n is not divisible by 2, and not by n.

When a > 1, the odd terms can be paired up much as before:

$$O_n = \sum_{\substack{k=1,3,5,\dots\\k=0}}^{n-1} k^n$$

= $\sum_{\substack{k \text{ odd}}}^{n/2-1} k^n + (n-k)^n$
= $\sum_{\substack{k \text{ odd}}}^{n/2-1} \left[k^n + \sum_{j=0}^n \binom{n}{j} n^j (-k)^{n-j} \right]$

Working modulo 2^a , the j > 0 terms of the inner sum vanish, and

$$O_n \equiv \sum_{k \text{ odd}}^{n/2-1} k^n + (-k)^n$$

$$\equiv \sum_{\substack{k \text{ odd}}}^{n/2-1} (k^m)^{2^a} + ((-k)^m)^{2^a}$$
$$\equiv \sum_{\substack{n/2-1\\k \text{ odd}}}^{n/2-1} 1 + 1$$
$$\equiv (n/4) \cdot 2 \equiv n/2 \equiv 2^{a-1}$$

So if n is even, 2^a does not divide S_n , nor does $m \cdot 2^a = n$. Conjecture 1 is correct.

4 The anti-Carmichael conjecture

Again, an anti-Carmichael number is a value n such that for all primes p dividing n, p-1 does not divide n-1. (Ordowski says n > 1; I'm happy to include n = 1.)

2-1 divides n-1, so anti-Carmichael numbers are odd.

If n is odd, 3-1 divides n-1; so anti-Carmichael numbers are not divisible by 3.

Let n be an odd number, and let p^a be a component of the factorization of $n: n = mp^a, m \perp p.^1$

$$T_n = \sum_{k=1}^{n-1} k^{n-1}$$
$$\equiv \sum_{k=1,k \perp p}^{mp^a - 1} k^{n-1} \mod p^a$$
$$\equiv m \sum_{k=1,k \perp p}^{p^a - 1} k^{n-1} \mod p^a$$

because the deleted terms are multiples of p^{n-1} and of p^a .

4.1 Groups modulo p^a

The modulo- p^a multiplicative group, G, has those values from 1 to $p^a - 1$ which are coprime to p: there are $p^a - p^{a-1} = |G|$ of them.

Since p is odd, the group is cyclic. Let g be a generator of the group.

 $^{^1\}mathrm{Theorem}$ 119 of Hardy&Wright
[2] suffices when n is squarefree.

That last expression for $T_n \mod p^a$ can be written

$$T_n \equiv m \sum_{k \in G} k^{n-1} \bmod p^a$$

Let $h = g^{p-1}$, and let H be the subgroup of G generated by h.

First, $h \equiv 1 \mod p$ (Fermat's little theorem), and each H element $(h^x \equiv (g^x)^{p-1})$ is $1 \mod p$. There are $p^{a-1} = |H|$ of them: all of the 1-mod-p elements of G. So other powers of g yield other values, not $\equiv 1 \mod p$, and

 $g^k \equiv 1 \mod p$ just if p - 1 divides k.

4.2 p-1 divides n-1

If p-1 divides n-1, then $g^{n-1} = h^{(n-1)/(p-1)}$, an element of H. Those exponents are coprime to p and to |H|, and so the latter exponentiation just permutes the H elements. Modulo- p^a ,

$$\begin{split} \sum_{k \in H} k^{(n-1)/(p-1)} &\equiv \sum_{k \in H} k \\ &\equiv \sum_{j=0}^{p^{a-1}-1} 1 + jp \\ &\equiv p^{a-1} + p \sum_{j=0}^{p^{a-1}-1} j \\ &\equiv p^{a-1} + p \cdot \frac{(p^{a-1}-1)p^{a-1}}{2} \\ &\equiv p^{a-1} \end{split}$$

In the following sum, the elements of G map to H: each H receives (p-1) of the Gs.

$$T_n \equiv m \sum_{k \in G} k^{n-1}$$
$$\equiv m(p-1) \sum_{k \in H} k^{(n-1)/(p-1)}$$
$$\equiv m(p-1)p^{a-1}$$
$$\equiv -mp^{a-1} \neq 0$$

So p^a does not divide T_n .

4.3 p-1 does not divide n-1

The elements of G are $g^0, g^1, ..., g^{|G|-1}$, and so

$$T_n \equiv m \sum_{k \in G} k^{n-1} \bmod p^a$$

$$= m \sum_{j=0}^{|G|-1} (g^j)^{n-1}$$

$$= m \sum_{j=0}^{|G|-1} (g^{n-1})^j$$

$$(g^{n-1}-1)T_n \equiv m((g^{n-1})^{|G|}-1) \equiv m \cdot 0$$

So p^a divides $(g^{n-1}-1)T_n$. But p-1 does not divide n-1, and p does not divide $g^{n-1}-1$: p^a divides T_n .

4.4 Conclusion

For odd n, component p^a divides T_n just if p-1 does not divide n-1. That applies to each component of the factorization of n.

If a number n > 1 is anti-Carmichael, then n is odd, and for each component p^a dividing n: p - 1 does not divide n - 1, and so p^a divides T_n . Therefore ndivides T_n , and $n \in A121707$.

Other numbers greater than 1 have some p-1 which divides n-1, p^a and n do not divide T_n , and $n \notin A121707$.

A121707 is the anti-Carmichael numbers except for n = 1.

References

- Neil Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org
- [2] G.H.Hardy, E.M.Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford University Press, 1983.