Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123344
Expansion of (1+3*x)/(1+2*x).
4
1, 1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097152, 4194304, -8388608, 16777216, -33554432, 67108864, -134217728, 268435456, -536870912, 1073741824, -2147483648
OFFSET
0,3
COMMENTS
Inverse binomial transform of A000034.
Hankel transform is [1,-3,0,0,0,0,0,0,0,0,...].
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
FORMULA
a(0)=1, a(n) = (-2)^(n-1) for n>0.
G.f.: (1+3*x)/(1+2*x).
G.f.: 1/U(0) where U(k)= 1 - x*(k+4) + x*(k+3)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012
E.g.f.: (3 - exp(-2*x))/2. - G. C. Greubel, Oct 12 2017
a(n) = numerator((1/2 - n)!/sqrt(Pi)). - Peter Luschny, Jun 21 2020
MAPLE
a:=n->mul(-2, k=0..n): seq(a(n), n=-2..30); # Zerinvary Lajos, Jan 22 2008
MATHEMATICA
Table[(-2)^(n - Sign[n]), {n, 0, 30}] (* Wesley Ivan Hurt, Feb 01 2014 *)
Join[{1}, LinearRecurrence[{-2}, {1}, 32]] (* Ray Chandler, Aug 12 2015 *)
Join[{1}, NestList[-2#&, 1, 40]] (* Harvey P. Dale, Aug 24 2019 *)
PROG
(Magma) [1] cat [(-2)^(n-1): n in [1..35]]; // Vincenzo Librandi, Feb 14 2014
(PARI) x='x+O('x^50); Vec((1+3*x)/(1+2*x)) \\ G. C. Greubel, Oct 12 2017
CROSSREFS
Cf. A011782 (unsigned version).
Sequence in context: A247208 A325744 A034008 * A141531 A084633 A000079
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Oct 11 2006
STATUS
approved