
 

Entanglement Permutations 

 
Antti Karttunen  

Vantaa, Finland 

E-mail: Antti.Karttunen@gmail.com 

(This July 27 2016 draft with slight improvements as suggested by Neil Sloane and anonymous referees of Bridges 2016 conference) 

 

 Abstract 
 

We present a generic technique for creating permutations of natural numbers with interesting properties. Many of 

these permutations seem to have potential for mathematical art, in both audio and visual realms. 

 

 

 Introduction 

 
I have for some years searched for instances of integer sequences (see Sloane [1] for the ever-growing 

collection) that are neither overly regular nor too symmetric (and thus boring), or so chaotic or rhythmless 

that it is hard to discern any structure at all. After seeing the still image of OEIS-movie [2], and finding 

that the still image was obtained from the scatter plot of Katarzyna Matylla’s sequence A135141 (Figure 

1, all A-numbers refer to sequences in [1]), I started forming similar recurrences in a systematic manner. 

Sometimes these matched with existing sequences, and in the majority of cases, the resulting scatter plot 

had interesting scale-invariant structure. 

 

 
 

 

Figure 1: Logarithmic scatter plot of Matylla’s A135141: (primes, composites) ⤰ (even, odd). 

 

 



 Formal Definition 

 
We use four letters from Ethiopic syllabary [3] as meta-variable names for integer sequences, for their 

easy memorability and pronounceability: ሌ [le],ሉ [lu], ሔ [he] and ሑ [hu]. Let (ሌ, ሉ) and (ሔ, ሑ) be two 

ordered pairs of complementary sequences in set ℕ \ {1}. In other words, sequences ሌ and ሉ have no 

common terms, and taken together, their union contains all natural numbers, from 2 onward. In normal 

cases, both ሌ and ሉ are indexed from the 1 onward. The sequences ሔ and ሑ should satisfy the same 

condition. Then we call the operation 

(ሌ, ሉ) ⤰ (ሔ, ሑ)  

the entangling of complementary pair (ሌ, ሉ) with the complementary pair (ሔ, ሑ), defined as an integer 

sequence a with the following implicit recursive definition: 

 

a(1) = 1,  and for all n > 1, a(ሌ(n)) = ሔ(a(n)) and a(ሉ(n)) = ሑ(a(n)). 

 

The above says that each n-th term of sequence ሌ should be mapped to the a(n)-th term of ሔ, and 

likewise, each n-th term of sequence ሉ should be mapped to the a(n)-th term of ሑ. This forms a well-

defined function of natural numbers because the sequences (range of the corresponding functions) ሌ and 

ሉ are injective on ℕ, thus they have well-defined left inverse functions ሌ−1 and ሉ−1 and also the indicator 

functions 1ሌ and 1ሉ. With their help, we can rewrite the above definition as an explicit recurrence: 

 

a(1) = 1,  and for all n > 1, a(n) = ሔ(a(ሌ−1(n))) when 1ሌ(n) = 1 

                                             a(n) = ሑ(a(ሉ−1(n))) when 1ሌ(n) = 0. 

 

which form can be directly converted to a short recursive program in most programming languages, 

provided we can find all the required components ሌ−1, ሉ−1 and either one of 1ሌ or 1ሉ. 

 

For lack of space, the proofs of the following properties are left to the reader. The mathematical 

induction should suffice for most: 
 

We can swap the order of complementary components inside each pair, if we do it to both pairs at the 

same time: 

 (ሌ, ሉ) ⤰ (ሔ, ሑ) = (ሉ, ሌ) ⤰ (ሑ, ሔ). 

 

If we form an entanglement in opposite order, the result is the inverse of the original and their 

composition (in either order) is the identity permutation on natural numbers: 1, 2, 3, 4, 5, …, sequence 

A000027 in OEIS: 

(ሌ, ሉ) ⤰ (ሔ, ሑ) ∘ (ሔ, ሑ) ⤰ (ሌ, ሉ) = (ሔ, ሑ) ⤰ (ሌ, ሉ) ∘ (ሌ, ሉ) ⤰ (ሔ, ሑ) = id. 

 

As a corollary of above two rules, the entanglement of any complementary pair (ሌ, ሉ) with the same pair 

in opposite order (ሉ, ሌ) produces always an involution: 

[(ሌ, ሉ) ⤰ (ሉ, ሌ)]2 = id. 

 

Useful fact of entanglements is that they obey a “chain rule”, allowing us to cancel intermediate 

components just like we were multiplying rational numbers. Note that for this to work nicely in notation, I 

have to define a composition of two functions,  f ∘ g : X → Z, in this order: (f ∘ g)(x) = g(f(x)). Also, for 

this axiom I need two more Ethiopic letters, ቤ [be] and ቡ [bu]: 

 

(ሌ, ሉ)⤰(ሔ, ሑ) ∘ (ሔ, ሒ)⤰(ቤ, ቡ) = (ሌ, ሉ)⤰(ቤ, ቡ). 

 

 



 Examples 

 
From this onward, I shall abuse the above notation a little. I shall write (ሌ, ሉ) ⤰ (ሔ, ሑ) even though 

either one of the sequences at the either side would include as its initial term number one. In that case it is 

up to the reader to realize that the initial 1 in that sequence should be skipped. So a sequence description 

like odd numbers (or just odd) really means odd numbers greater than one, 3, 5, 7, 9, …, and likewise 

even numbers (or just even) refers to nonzero even numbers, 2, 4, 6, 8, …. Unless otherwise noted, one is 

mapped to itself in the resulting permutation, as before. 

 

Apart from odd and even numbers there are other ways to divide natural numbers to two subsets of 

approximately 50/50 distribution. For example, the odious and evil numbers (sequences A000069 and 

A001969) are numbers whose binary representations have odd or even number of 1-digits respectively. 

Entangling them with odd and even numbers as (even, odd) ⤰ (evil, odious) yields the famous binary 

reflected Gray code (A003188). However, its plot (left side of figure 2) belongs just to that category of 

too regular fractals of which I have grown tired off.  

 

Somewhat surprisingly, another famous sequence, Hofstadter-Conway $10000 sequence A004001 [4], 

(defined as a(n) = a(a(n-1))+a(n-a(n-1)) with a(1) = a(2) = 1), yields an interesting permutation, which 

also respects the boundaries of powers of 2. First, two subsequences of natural numbers A088359 and 

A087686 are picked, based on whether a number occurs in the range of A004001 only once or more than 

once. Then the entanglement (A087686, A088359) ⤰ (even, odd) gives us a permutation A267111, whose 

plot is shown at the right side of Figure 2. Remarkably, it has a much more flowing character than base-2 

related permutations usually have. 

 

 

                     
 

Figure 2: Two entanglement-permutations with regular base-2 related replicating patterns: On the left, 

binary reflected Gray code (A003188), and on the right A267111. 

 

 

Employing sequences obtained from the number theory (e.g., primes and composites) at the other side of 

the entanglement operation offers an exit from too much regularity. Indeed, whenever in (ሌ, ሉ) ⤰ (even, 

odd) the relative frequency between the components ሌ and ሉ tapers off in more or less continuous 

fashion, the result will look very much like Matylla’s A135141, with the same characteristic “Curtain of 

Fractal Spray” appearance. As the other subset of the first pair soon becomes “dominant”, reducing the 

resulting permutation modulo k2n for some k and n clusters many of the values at multiples of 2n, while 

the component k of the modulus essentially randomizes the rest. I think this is the reason that even with 

the simple MIDI-generation script of OEIS [5] with its default pitch modulus 88, some of these sequences 

generate (subjectively) interesting rhythmic patterns.  Try A245701 for example. 



Variations of the sieve of Eratosthenes include Ulam’s Lucky/Unlucky numbers, and Ludic/Nonludic 

numbers. Entangling (ludic,nonludic)⤰(primes,composites) produces A255422, with a “comet-like 

appearance” (see fig 3). 

 

 
 

 

Figure 3: Scatter plot of A255422: (ludic,nonludic) ⤰  (primes, composites). 

 

 

Chebyshev bias [6] is an observation that for the long time, the primes of the form 4n+1 are less 

numerous than those of the form 4n+3. The sequences A080147 and A080148 give their indices among 

all primes. Entangling them with each other yields “Chebyshev’s bat”, show in Fig. 4. 

 

 

 

 
 

Figure 4: Scatter plot of "Chebyshev’s bat” A267107: (A080147, A080148) ⤰ (A080148, A080147). 



We can approach number sieves in a more piecemeal way than just by using their end results. From sieves 

like Eratosthenes, Ludic and Lucky, we can from each form a square array, where each row k lists all the 

numbers sieved off at the k-th stage of sieve. What is common to all three is that the even numbers 

(together with 1) are removed in the first batch. For each such array of sieved numbers, we form a vertical 

successor function s(n) that will return the next number immediately below n in the same column of that 

array. By convention, s(1) = 1. Because even numbers occur on the first row, they are not in the range of 

s, while each odd number occurs exactly once in the range of such s. Thus (even numbers, {s(n) for 

n=2..}) is a complementary pair of sequences in the set ℕ \ {1}, and this pair can be entangled with any 

another complementary pair. Recall that the definition of entanglement does not require any of the 

component sequences to be monotonic. 

 

 
 

 

Figure 5: A269865: (even,odd) ) ⤰  (even, A250469). Straight and logarithmic scatter plot. 

 

If we do the same entanglement slightly differently, we get A252755, entangled as (even,odd) ⤰{0→1, 1→2}  

(even, A250469). Here the new notation ⤰{0→1, 1→2} means the same as ⤰, except that the resulting 

permutation maps 0 to 1, 1 to 2, and entangles the rest as before. The resulting scatter plot (fig. 6) looks 

remarkably different. 

 

 
 

Figure 6: Scatter plot of A252755: (even,odd) ⤰{0→1, 1→2}  (even, A250469). 



 

Discussion 

 
I have presented a generic formula for creating permutations from almost any complementary pairs of 

integer sequences, no matter in which field of discrete mathematics they originate from. For example, 

A269168 involves one-dimensional cellular automaton, in A269366 the other of complementary pairs is 

produced by a greedy algorithm, and A269397 entangles “beanstalk-sequences”. It would be interesting 

to know what actually happens in such entanglements. The most of them clearly exhibit fractal-like scale-

invariance (although there are also more chaotic exceptions, e.g. A269863). What portion of the overall 

behavior is inherited from the sequences to be entangled (e.g. their relative long-term statistical 

distribution on the other hand, and any unique quirks and starting conditions on the other hand)? What 

part is just the general effect of the self-amplifying feedback-process inherent in the recursive definition? 

What is the meaning of “chain rule”? Is it “de-entangling” or “re-entangling” or even “re-encoding”? 

Sometimes it works even as a flipping of the graph in X/Y-plane, e.g. when composing other 

entanglement involving odd and even numbers with A054429 = (even, odd) ⤰ (odd, even). Also, 

entanglements of the form (even, odd) ⤰ (ሔ, ሑ) give an interesting binomial distribution of “Markovian 

iterations” of functions ሔ and ሑ, which is especially interesting if the other function is completely 

regular and the other much more chaotic. 

 

Although the scatter plots of these sequences look pretty, I didn’t mean to stop there. Various prospective 

avenues in visual arts that immediately come to my mind are L-systems [7] or T-sequences used in 

weaving [8]. When the magnitude of terms grows quickly very large, one has to decide what part of the 

information contained in each term should be fed as input to such algorithms (e.g. by modular arithmetic). 

In musical realm, some of the sequences could probably make more sense as source for raw sound data 

with further signal processing, while some would work at the note-level, but with much more 

sophisticated pitch-mappings [9] than “modulo 88”. 
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