Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157290
Decimal expansion of 105/Pi^4.
5
1, 0, 7, 7, 9, 2, 8, 1, 3, 6, 7, 4, 1, 8, 5, 5, 1, 9, 4, 8, 6, 1, 0, 4, 2, 2, 4, 3, 0, 4, 7, 4, 6, 2, 8, 8, 4, 8, 9, 1, 9, 1, 9, 1, 9, 4, 6, 3, 2, 0, 1, 7, 5, 8, 5, 4, 0, 7, 6, 4, 3, 7, 2, 4, 5, 5, 7, 2, 3, 4, 5, 8, 0, 9, 3, 2, 9, 5, 1, 6, 2, 6, 1, 5, 2, 6, 0, 0, 1, 0, 2, 6, 0, 0, 5, 5, 0, 1, 5, 0, 9, 0, 8, 4, 8
OFFSET
1,3
COMMENTS
The Product_{p = primes = A000040} (1+1/p^4), the quartic analog to A082020.
REFERENCES
Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 230.
FORMULA
Equals A013662/A013666 = Product_{i>=1} (1+1/A030514(i)).
Equals Sum_{k>=1} 1/A005117(k)^4 = 1 + Sum_{k>=1} 1/A113849(k). - Amiram Eldar, May 22 2020
Equals 1/A347329. - Hugo Pfoertner, Jul 01 2024
EXAMPLE
1.077928136741855194... = (1+1/2^4)*(1+1/3^4)*(1+1/5^4)*(1+1/7^4)*...
MAPLE
evalf(105/Pi^4) ;
MATHEMATICA
RealDigits[105/\[Pi]^4, 10, 150][[1]] (* Harvey P. Dale, Mar 20 2011 *)
PROG
(PARI) 105/Pi^4 \\ Charles R Greathouse IV, Sep 30 2022
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Feb 26 2009
STATUS
approved