Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A158084
Prime numbers, with a(1)=2, a(n+1) = least prime such that (sum of even digits of a(n)) < (sum of even digits of a(n+1)).
0
2, 41, 61, 83, 281, 487, 683, 881, 2887, 4889, 6883, 8887, 46889, 48883, 68881, 88883, 468883, 688861, 688889, 888887, 2888887, 4888889, 8868887, 28886881, 28888883, 48888887, 88888867, 88888883, 288888889, 668888887, 688888883, 888888883
OFFSET
1,1
MATHEMATICA
f[n_] := Block[{m = Total@ Select[ IntegerDigits@ n, EvenQ], p = 2}, While[ Total@ Select[ IntegerDigits@ p, EvenQ] <= m, p = NextPrime@ p]; p]; NestList[f, 2, 31] (* Robert G. Wilson v, Jun 23 2014 *)
CROSSREFS
Cf. A000040.
Sequence in context: A107190 A215391 A164776 * A243990 A141858 A062650
KEYWORD
nonn,base,less
AUTHOR
Juri-Stepan Gerasimov, Mar 12 2009, Mar 18 2009
EXTENSIONS
Definition corrected by N. J. A. Sloane, Mar 19 2009
a(12) from Alvin Hoover Belt, May 20 2009
Definition clarified by D. S. McNeil, Dec 10 2009
Missing values 683 and 8887 inserted and extended by D. S. McNeil, Dec 10 2009
a(26) - a(32) from Robert G. Wilson v, Jun 23 2014
STATUS
approved