OFFSET
0,2
COMMENTS
CONJECTURE: For all integer m>0, Sum_{n>=0} L(n)^m * log(1+x)^n/n! is an integer series whenever Sum_{n>=0} L(n)*log(1+x)^n/n! is an integer series.
In this case, m=2 and L(n) = A004123(n), which is the number of generalized weak orders on n points.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 48*x^2 + 864*x^3 + 20880*x^4 + 632448*x^5 +...
Illustrate A(x) = Sum_{n>=0} A004123(n)^2 * log(1+x)^n/n!:
A(x) = 1 + 2^2*log(1+x) + 10^2*log(1+x)^2/2! + 74^2*log(1+x)^3/3! + 730^2*log(1+x)^4/4! + 9002^2*log(1+x)^5/5! +...+ A004123(n)^2*log(1+x)^n/n! +...
where the e.g.f. of A004123 is 1/(3 - 2*exp(x)) and thus:
1/(1-2x) = 1 + 2*log(1+x) + 10*log(1+x)^2/2! + 74*log(1+x)^3/3! + 730*log(1+x)^4/4! + 9002*log(1+x)^5/5! +...+ A004123(n)*log(1+x)^n/n! +...
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2009
STATUS
approved