Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A167498
a(n) = 6+32*n^2+8*n*(7+8*n^2)/3.
1
6, 78, 342, 926, 1958, 3566, 5878, 9022, 13126, 18318, 24726, 32478, 41702, 52526, 65078, 79486, 95878, 114382, 135126, 158238, 183846, 212078, 243062, 276926, 313798, 353806, 397078, 443742, 493926, 547758, 605366, 666878, 732422, 802126, 876118, 954526, 1037478, 1125102
OFFSET
0,1
COMMENTS
Binomial transform of quasi-finite sequence 6,72,192,128,0,(0 continued).
a(n) mod 10 is periodic with period length 5: repeat 6,8,2,6,8.
FORMULA
a(n) = A166464(n) + A166464(2n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 128.
G.f.: ( 6+54*x+66*x^2+2*x^3 ) / (x-1)^4 . - R. J. Mathar, Jul 01 2011
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {6, 78, 342, 926}, 100] (* G. C. Greubel, Jun 14 2016 *)
PROG
(Magma) [6+32*n^2+8*n*(7+8*n^2)/3: n in [0..50] ]; // Vincenzo Librandi, Aug 06 2011
CROSSREFS
Sequence in context: A030641 A116280 A134788 * A250388 A231248 A160240
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 05 2009
STATUS
approved