%I #44 Sep 08 2022 08:45:54
%S 0,0,1,2,1,2,2,3,1,2,2,3,2,3,3,2,1,2,2,3,2,3,3,2,2,3,3,2,3,2,2,3,1,2,
%T 2,3,2,3,3,2,2,3,3,2,3,2,2,3,2,3,3,2,3,2,2,3,3,2,2,3,2,3,3,3,1,2,2,3,
%U 2,3,3,2,2,3,3,2,3,2,2,3,2,3,3,2,3,2,2,3,3,2,2,3,2,3,3,3,2,3,3,2,3
%N Number of steps to reach 0 or 1, starting with n and applying the map k -> (number of 1's in binary expansion of k) repeatedly.
%C The number of 1's in binary expansion of n is called the binary weight (or Hamming weight) of n, A000120(n).
%C a(n)=0 for n=0 and n=1; a(n)=1 for powers of 2.
%C Records appear for n = 2, 3, 7, 127=2^7-1, 2^127-1, ... (terms of A007013).
%C It appears that the indices of the even terms for n>0 are sequence A075311.
%H Reinhard Zumkeller, <a href="/A180094/b180094.txt">Table of n, a(n) for n = 0..10000</a>
%p a:= n-> `if`(n<2, 0, 1 + a(add(i, i=convert(n, base, 2)))):
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jan 15 2011
%t Table[Length[NestWhileList[DigitCount[#,2,1]&,n,#>1&]]-1,{n,0,100}] (* _Harvey P. Dale_, Jul 27 2012 *)
%o (PARI)
%o bitcount(x)=
%o { /* Return Hamming weight of x, i.e. A000120(x) */
%o local(p); p = 0;
%o while ( x, p+=bitand(x, 1); x>>=1; );
%o return( p );
%o }
%o X(n)=
%o { /* Return how many iterations of bitcount() are needed to reach 0 or 1 */
%o if ( n<=1, return(0) );
%o return( 1+X(bitcount(n)) );
%o }
%o { for (n=0, 100, print1(X(n),", ") ); } /* print terms of sequence */
%o (Magma)
%o Countbits:=func< n | &+Intseq(n, 2) >;
%o StepsTo01:=function(n); s:=0; k:=n; while k gt 1 do k:=Countbits(k); s+:=1; end while; return s; end function;
%o [ StepsTo01(n): n in [0..105] ]; // _Klaus Brockhaus_, Jan 15 2011
%o (Haskell)
%o a180094 n = snd $ until ((< 2) . fst) (\(x, c) -> (a000120 x, c+1)) (n,0)
%o -- _Reinhard Zumkeller_, Apr 22 2011
%Y Cf. A000120, A072086.
%Y One less than A078627.
%K nonn
%O 0,4
%A _Joerg Arndt_, Jan 15 2011