Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A180178
Triangle read by rows: T(n,k) is the number of compositions of n without 3's and having k parts; 1 <= k <= n.
6
1, 1, 1, 0, 2, 1, 1, 1, 3, 1, 1, 2, 3, 4, 1, 1, 4, 4, 6, 5, 1, 1, 4, 9, 8, 10, 6, 1, 1, 5, 12, 17, 15, 15, 7, 1, 1, 6, 15, 28, 30, 26, 21, 8, 1, 1, 7, 21, 38, 56, 51, 42, 28, 9, 1, 1, 8, 27, 56, 85, 102, 84, 64, 36, 10, 1, 1, 9, 34, 80, 130, 172, 175, 134, 93, 45, 11, 1, 1, 10, 42, 108, 200
OFFSET
1,5
REFERENCES
P. Chinn and S. Heubach, Compositions of n with no occurrence of k, Congressus Numerantium, 164 (2003), pp. 33-51 (see Table 5).
R.P. Grimaldi, Compositions without the summand 1, Congressus Numerantium, 152, 2001, 33-43.
LINKS
P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
FORMULA
Number of compositions of n without p's and having k parts = Sum_{j=(pk-n)/(p-1)..k} (-1)^(k-j)*binomial(k,j)*binomial(n-pk+pj-1, j-1).
For a given p, the g.f. of the number of compositions without p's is G(t,z) = t*g(z)/(1-t*g(z)), where g(z) = z/(1-z) - z^p; here z marks sum of parts and t marks number of parts.
EXAMPLE
T(7,4)=8 because we have (1,2,2,2), (2,1,2,2), (2,2,1,2), (2,2,2,1), (1,1,1,4), (1,1,4,1), (1,4,1,1), and (4,1,1,1).
Triangle starts:
1;
1, 1;
0, 2, 1;
1, 1, 3, 1;
1, 2, 3, 4, 1;
1, 4, 4, 6, 5, 1;
MAPLE
p := 3: T := proc (n, k) options operator, arrow: sum((-1)^(k-j)*binomial(k, j)*binomial(n-p*k+p*j-1, j-1), j = (p*k-n)/(p-1) .. k) end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
p := 3: g := z/(1-z)-z^p: G := t*g/(1-t*g): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 13 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form
with(combinat): m := 3: T := proc (n, k) local ct, i: ct := 0: for i to numbcomp(n, k) do if member(m, composition(n, k)[i]) = false then ct := ct+1 else end if end do: ct end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
MATHEMATICA
p = 3; max = 14; g = z/(1-z) - z^p; G = t*g/(1-t*g); Gser = Series[G, {z, 0, max+1}]; t[n_, k_] := SeriesCoefficient[Gser, {z, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 28 2014, after Maple *)
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 15 2010
STATUS
approved