Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A180324
Vassiliev invariant of fourth order for the torus knots
5
0, 3, 25, 98, 270, 605, 1183, 2100, 3468, 5415, 8085, 11638, 16250, 22113, 29435, 38440, 49368, 62475, 78033, 96330, 117670, 142373, 170775, 203228, 240100, 281775, 328653, 381150, 439698, 504745, 576755, 656208, 743600, 839443
OFFSET
0,2
COMMENTS
a(n) is the Vassiliev invariant of fourth order for the torus knots. a(n) can be calculated as the number of attachments of the two arrow diagrams in the arrow diagram of the torus knot. Arrow diagram of the torus knot is 2n+1 intersecting arrows with mixing ends.
Antidiagonal sums of the convolution array A213847. - Clark Kimberling, Jul 05 2012
First differences of the terms produced by convolving the odd and even triangular numbers, with n>0. The sequence begins 0, 3, 28, 126, 396, 1001, 2184, 4284, 7752, 13167, 21252..starting at n=1 and has the formula (4*n^5 - 5*n^3 + 30*n)/30. - J. M. Bergot, Sep 09 2016
LINKS
S. V. Allenov, Explicit formulas for Vassil'ev invariants of the fourth order for knots, Journal of Mathematical Sciences, New York: Springer, Vol. 157, No. 3 (2009), 413-423.
M. Polyak, O. Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. Notices, 11 (1994), 445-453.
FORMULA
a(n) = (n*(n+1)*(2*n+1)^2)/6.
a(n) = C(2*n+2,4) + C(2*n+2,3)/2.
G.f.: x*(3+x)*(1+3*x)/(1-x)^5. - Colin Barker, Mar 17 2012
EXAMPLE
a(1) = 1*2*3^2/6 = 3.
a(2) = 2*(2+1)*(2*2+1)^2/6 = 5^2 = 25.
MAPLE
a:=n->(1/6)*n*(n+1)*(2*n+1)^2;
a:=n->binomial(2*n+2, 4)+binomial(2*n+2, 3)/2;
MATHEMATICA
Table[Binomial[2n+2, 4]+Binomial[2n+2, 3]/2, {n, 0, 40}] (* Harvey P. Dale, Sep 18 2018 *)
PROG
(PARI) a(n) = n*(n+1)*(2*n+1)^2/6
CROSSREFS
a(n) = (2n+1)*A000330(n).
a(n) = 3*A000330(n)^2/A000217(n).
a(n) = (A000330(1) + A000330(2) + … + A000330(2n-1) + A000330(2n))/2.
Sequence in context: A075306 A183761 A212054 * A124245 A360788 A373682
KEYWORD
nonn,easy
AUTHOR
Sergey Allenov, Jan 18 2011
STATUS
approved