COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI

10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973.

A SURVEY OF THE MAXIMUM DEPTH PROBLEM FOR INDECOMPOSABLE EXACT COVERS*

J.E. GRAVER

1. THE PROBLEM

Let U be a finite set and let $\mathcal{P}(U)$ denote the collection of all subsets of U. By a system of blocks on U, we shall mean a function $f: \mathcal{P}(U) \to \{0, 1, 2, \ldots\}$. We may thing of f(S) as the number of times the subset S appears as a block in the system. Thinking of systems in terms of functions leads naturally to concept of addition of systems:

$$(f+g)(S)=f(S)+g(S)\;.$$

We may think of f + g as the system obtained by superimposing the systems f and g.

We say that the system f has weight w[f] where

$$w[f] = \sum_{S} f(S) .$$

^{*}This research was supported in part by NSF grant GP-19404.

We say that f is an exact cover of depth d[f] if for each $u \in U$,

$$\sum_{u \in S} f(S) = d[f] .$$

Clearly if f and g are exact covers then f+g is an exact cover. In fact d[f+g]=d[f]+d[g] and w[f+g]=w[f]+w[g].

Let z denote the zero function. We say that an exact cover f is decomposable if $f = g_1 + g_2$ where for each i, g_i is an exact cover and $g_i \neq z$. If f is not decomposable, we say f is indecomposable. Let |U| = n and define

 $D_n = \max \left\{ d[f] \colon f \text{ is an indecomposable exact cover of } U \right\} \,,$ where it is understood that $D_n = \infty$ is a possibility.

The obvious question to ask is if D_n is finite. This question was answered in the affirmative by $\operatorname{Huckemann}$ and Jurkat [3]. Although many people have considered the problem, the exact value of D_n is known only if n < 6, and the best known upper and lower bounds are quite "divergent" from one another. It is hoped that a wider interest in this problem will produce some better results.

2. EXAMPLES

For |U|=1 there are exactly two non-zero indecomposable exact cover, namely f and g defined by $f(\phi)=0$, f(U)=1, $g(\phi)=1$, g(U)=0. Since d[f]=1 while d[g]=0, $D_1=1$. Now let $U=\{u_1,u_2\}$. One easily verifies that f, defined by $f(\phi)=f(\{u_1\})=f(\{u_2\})=0$, f(U)=1, g defined by $g(\phi)=1$, $g(\{u_1\})=g(\{u_2\})=g(U)=0$, and f defined by $f(\phi)=f(\{u_1\})=f(\{u_2\})=1$, are the only indecomposable exact covers of f. Hence f and f any partition of f and f any finite set f and any partition of f and f are elsewhere is an indecomposable exact cover of depth 1. If f and f are the only one indecomposable exact cover aside from those arising from partitions or the empty set:

$$f(S) = \begin{cases} 1 & \text{if } |S| = 2, \\ 0 & \text{if } |S| \neq 2. \end{cases}$$

This is easily verified, and hence $D_3 = 2$.

In general, for an n-set U, f defined by

(1)
$$f(S) = \begin{cases} 1 & \text{if } |S| = n - 1, \\ 0 & \text{if } |S| \neq n - 1, \end{cases}$$

is an indecomposable exact cover of U of depth n-1. The indecomposability of this exact cover can be easily proved directly; however, it will follow at once from the following Proposition.

For an arbitrary system of blocks f on U we define \overline{f} , the complement of f, by $\overline{f}(S) = f(\overline{S})$ for all $S \subseteq U$, where \overline{S} denotes the complement of S in U. We observe that

(2)
$$\overline{\overline{f}} = f$$
,

(3)
$$\overline{f+g} = \overline{f} + \overline{g}$$
,

(4)
$$\overline{f} = z \text{ iff } f = z$$
,

Proposition 1. \bar{f} is an (indecomposable) exact cover if and only if f is an (indecomposable) exact cover. Furthermore, $d[f] + d[\bar{f}] = w[\bar{f}] = w[f]$.

Proof. It is clear that $w[\overline{f}] = w[f]$. Assume that f is an exact cover and let $u \in U$. Then,

$$\sum_{u \in S} \overline{f}(S) = \sum_{u \in S} f(\overline{S}) = \sum_{u \notin S} f(S) =$$

$$= \sum_{S} f(S) - \sum_{u \in S} f(S) = w[f] - d[f].$$

It follows at once that \bar{f} is an exact cover of depth w[f] - d[f]. Now assume that f is indecomposable and that $\bar{f} = g_1 + g_2$, where g_1 and g_2 are exact covers. Using the above implication along with (2) and (3)

above, we have $f = \overline{g_1} + \overline{g_2}$, where $\overline{g_i}$ is an exact cover. Since f is indecomposable $\overline{g_i} = z$ for some i and thus by (4), $g_i = z$ for some i. We conclude that \overline{f} is indecomposable. Finally by applying (2) above the equivalence is established.

Returning to our example, we see that, for any n-set U, f as defined in (1) is the complement of the indecomposable exact cover arising from the partition of U into one element cells and is therefore indecomposable.

If |U|=4, we have, up to permutation, one partition into 4 cells, one partition into 3 cells, two partitions into 2 cells, and one partition with 1 cell. Under complementation, the first type of partition (4 cells) yields f as in (1). The partitions of type 3 (2 cells) are invariant under complementation, and the fourth type (1 cell) yields the exact cover of depth 0 under complementation. The remaining type (3 cells) yields an indecomposable exact cover of depth 2 under complementation. It is not too difficult to show that up to permuation there are only 3 more types of indecomposable exact covers, g and h below and the complement of h (g is self-complementary). Let $U = \{u_1, u_2, u_3, u_4\}$.

(5)
$$g(S) = \begin{cases} 1 & \text{if } S = \{u_1\}, \{u_1, u_2, u_3\}, \{u_2, u_4\}, \text{ or } \{u_3, u_4\}, \\ 0 & \text{otherwise.} \end{cases}$$

(6)
$$h(S) = \begin{cases} 2 & \text{if } S = \{u_1, u_2, u_3\}, \\ 1 & \text{if } S = \{u_1, u_4\}, \{u_2, u_4\}, \text{ or } \{u_3, u_4\}, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly w[g] = 4 and d[g] = 2 while w[h] = 5 and d[h] = 3. Hence h and f as defined in (1) have the maximum depth among all indecomposable exact covers of a 4-set, and $D_4 = 3$. A table of indecomposable exact covers of a 4-set occurs in [6].

Beyond 4, the complete listing of indecomposable exact covers becomes tedious — it becomes "impossible" beyond 6 or 7.

The asymptotic behavior of $c_n = \frac{D_n}{d_n}$ may, in fact, prove to be a very interesting question.

ГО	1	1	1	1	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	0	0	1	1
0 1 1 1 1	1	1	0	0	1
0	0	1	1	1_	1

An indecomposable exact cover of depth 4 which is not an extremal exact cover.

Table 3

6. ACKNOWLEDGEMENTS

I would like to thank the many people who have responded to my requests for information with pre- and reprints, unpublished manuscripts, and long informative letters. Most of their names occur in the paper. In particular, I would like to thank Lloyd Shapley for a great deal of help and consideration. Due to the "naturalness" of this problem, it is highly probable that I am not aware of all the work done on exact covers. I would like to offer my apologies to everyone whose work I have overlooked.

REFERENCES

- [1] L.J. Billera, Some recent results in *n*-person game theory, *Math. Prog.*, 1, No. 1 (1971), 58-67.
- [2] J. Hadamard, Résolution d'une question relative aux déterminants, Bull. Sci. Math., (2), 17, (1893), 240-246.
- [3] F. Huckemann W.B. Jurkat, Finiteness theorems for coverings and semi-groups, to appear.

- [4] B. Peleg, An inductive method for constructing minimal balanced collections of finite sets, *Naval Res. Logist. Quart.*, 12, June (1965), 155-162.
- [5] J. Shalhevet, unpublished notes.
- [6] L.S. Shapley, On balanced sets and cores, Naval Res. Logist. Quart., 14 (1967), 453-460.
- [7] L.S. Shapley, Balanced sets, Sperner's lemma, and Scarf's theorem on the core, to appear in Mathematical Programming, Academic Press, New York, 1973.
- [8] L.S. Shapley, unpublished notes.
- [9] J. Spencer, unpublished notes.
- [10] J.H. van Lint H.O. Pollak, An "offense-last-move" game against perfect local defense at targets of arbitrary values, to appear.
- [11] J. Williamson, Determinants whose elements are 0 and 1, Am. Math. Monthly, 53 (1946), 427-434.