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A SURVEY OF THE MAXIMUM DEPTH PROBLEM FOR
INDECOMPOSABLE EXACT COVERS*

J.E. GRAVER

1. THE PROBLEM

Let U be a finite set and let #(U) denote the collection of all sub-
sets of U. By a system of blocks on U, we shall mean a function
f: 2(U~1{0, 1,2, ...}. We may thing of f{S) as the number of times the
subset S appears as a block in the system. Thinking of systems in terms
of functions leads naturally to concept of addition of systems:

(F+8)(S) = AS) + g(S) .

We may think of f+ g as the system obtained by superimposing the sys-
tems f and g.

We say that the system f has weight w[f] where
wif] = SZ AS).

*This research was supported in part by NSF grant GP-19404.
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We say that f is an exact cover of depth d[f] if for each u€ U,

2 fS) =dl.

UES

Clearly if f and g are exact covers then f+ g is an exact cover. In fact
dif+ gl = d[f] + d[g] and w[f+ g] = w[f] + w[g].

Let z denote the zero function. We say that an exact cover f is
decomposable if f=g, +g, where for each i, g; is an exact cover and
g #z. If f isnot decomposable, we say [ is indecomposable. Let |U| = n
and define

D, = max {d[f]: f is an indecomposable exact cover of U} ,
where it is understood that D, = isa possibility.

The obvious question to ask is if D, is finite. This question was an-
swered in the affirmative by Huckemann and Jurkat [3]. Although
many people have considered the problem, the exact value of D, is
known only if n< 6, and the best known upper and lower bounds are
quite “divergent” from one another. It is hoped that a wider interest in
this problem will produce some better results.

2. EXAMPLES

For |U|= 1 there are exactly two non-zero indecomposable exact
cover, namely f and g defined by flg)=0, AV)=1, g(¢) =1,
g(U) = 0. Since d[f] =1 while d[g]=0, D, =1. Nowlet U={u,,u,}
One easily verifies that f, defined by fig) = fl{y,}) = fHu,}) =0,
)= 1, g defined by g(9)=1, g({u;}) = g({u,}) = g(U) =0, and h
defined by h(¢) = h(U)=0, h({u,}) = h({u,}) = 1, are the only inde-
composable exact covers of U. Hence D, = 1. In general, for any finite
set U and any partition of U, the function which takes on the value 1
at each cell of the partition and zero elsewhere is an indecomposable exact
cover of depth 1. If U= {u,,u,,u,}, there is only one indecomposable
exact cover aside from those arising from partitions or the empty set:
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1 if |S1=2,
fS) =
0 if |SI#2.

This is easily verified, and hence D, = 2.

In general; for an n-set U, f defined by

1 if |[Si=n—-1;

(1) ﬂS)=[
0 if |SI#n-1,

is an indecomposable exact cover of U of depth n — 1. The indecom-
posability of this exact cover can be easily proved directly; however, it will
follow at once from the following Proposition.

For an arbitrary system of blocks f on U we define f, the com-
plement of f, by f(S)=f(S) forall SE U, where S denotes the com-
plement of S in U. We observe that

(2) =f,
(3) =f+g,
(4) f=z iff f=

Proposition 1. f is an (indecomposable) exact cover if and only if
f is an (indecomposable) exact cover. Furthermore, dif] + difl = wif] =

= w[f].

Proof. It is clear that w[f] = w[f]. Assume that f is an exact cover
and let u€ U. Then,

D iS)= 2 fO= 2 fi9=
uEesS ugES

ues

=§ﬂm—u§sm=wm—d[n.

\

It follows at once that f is an exact cover of depth w([f] — d[f]. Now
assume that f is indecomposable and that f= 8, + & where g, and
g, are exact cOVers. Using the above implication along with (2) and (3)
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above, we have f=g, +g,, where g is an exact cover. Since f is in-
decomposable g, =z for some i and thus by (4), g = z for some |
We conclude that f is indecomposable. Finally by applying (2) above the
equivalence is established.

Returning to our example, we see that, for any n-set U, f as defined
in (1) is the complement of the indecomposable exact cover arising from
the partition of U into one element cells and is therefore indecomposable.

If |U|=4, we have, up to permutation, one partition into 4 cells,
one partition into 3 cells, two partitions into 2 cells, and one partition with
1 cell. Under complementation, the first type of partition (4 cells) yields
f asin (1). The partitions of type 3 (2 cells) are invariant under comple-
mentation, and the fourth type (1 cell) yields the exact cover of depth 0
under complementation. The remaining type (3 cells) yields an indecom-
posable exact cover of depth 2 under complementation. It is not too dif-
ficult to show that up to permuation there are only 3 more types of in-
decomposable exact covers, g and /& below and the complement of 4
(g is self-complementary). Let U= {ug,up), uy, uy}.

1 = (0 g Wt g 0, Y, o8 {ugi 0,0,
(5) ) =

| 0 otherwise.

V2 ]f S={u1,u2,u3},
(6) rS)=q11 if S={u1,u4}s{u2’u4}, or {u3,u4},

| 0 otherwise.

Clearly w[g]=4 and d[g] =2 while w[h]=5 and d[h]= 3. Hence
h and f as defined in (1) have the maximum depth among all indecom-
posable exact covers of a 4-set, and D, = 3. A table of indecomposable
exact covers of a 4-set occurs in [6].

Beyond 4, the complete listing of indecomposable exact covers be-
comes tedious — it becomes impossible’’ beyond 6 or 7.
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The asymptotic behavior of gL = a-f'- may, in fact, prove to be a very in-
n
teresting question.
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