Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A182409
Prime-generating polynomial: 4n^2 + 12n - 1583.
1
-1583, -1567, -1543, -1511, -1471, -1423, -1367, -1303, -1231, -1151, -1063, -967, -863, -751, -631, -503, -367, -223, -71, 89, 257, 433, 617, 809, 1009, 1217, 1433, 1657, 1889, 2129, 2377, 2633, 2897, 3169, 3449, 3737, 4033, 4337, 4649, 4969, 5297, 5633, 5977
OFFSET
0,1
COMMENTS
The polynomial generates 35 primes/negative values of primes in row starting from n=0.
The polynomial 4*n^2 - 284*n + 3449 generates the same primes in reverse order.
Other related polynomials:
For n = 6n+6 than n = n-11 we get 144n^2 - 2808n + 12097 which generates 16 primes in row starting from n=0 (with the discriminant equal to 2^9*3^2*199);
For n = 12n+12 than n = n-15 we get 576n^2 - 15984n + 109297 which generates 17 primes in row starting from n=0 (with the discriminant equal to 2^11*3^2*199).
So this polynomial opens at least two directions of study:
(1) polynomials of type 4n^2 + 12n - p, where p is prime (could be of the form 30k+23);
(2) polynomials with the discriminant equal to 2^n*3^m*199, where n is odd and m is even (an example of such a polynomial, with the discriminant equal to 2^5*3^4*199, is 36n^2 - 1020n + 3643 which generates 32 primes for values of n from 0 to 34).
FORMULA
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (1591*x^2 - 3182*x + 1583)/(x - 1)^3.
(End)
MATHEMATICA
Table[4 n^2 + 12 n - 1583, {n, 0, 50}] (* Vincenzo Librandi, May 29 2016 *)
PROG
(PARI) a(n)=4*n^2+12*n-1583 \\ Charles R Greathouse IV, Oct 01 2012
(Magma) [4*n^2+12*n-1583: n in [0..50]]; // Vincenzo Librandi, May 29 2016
CROSSREFS
Sequence in context: A253421 A023082 A216064 * A350027 A224944 A222164
KEYWORD
sign,easy
AUTHOR
Marius Coman, May 09 2012
STATUS
approved