Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A184179
Number of permutations of {1,2,...,n} having no isolated fixed points. A fixed point j of a permutation is said to be isolated if neither j-1 nor j+1 is a fixed point. For example, 4135267 has only 3 as an isolated fixed point.
1
1, 0, 2, 3, 13, 56, 325, 2193, 17133, 151403, 1492804, 16236705, 193055170, 2490573878, 34643194357, 516777941500, 8228894996020, 139306002813141, 2498256515693495, 47311260905613040, 943450588439096803, 19760190063791826195, 433686706399407670577
OFFSET
0,3
COMMENTS
a(n) = A184178(n,0).
FORMULA
a(n) = Sum_{j=0..n} d(n-j)*Sum_{m=0..floor(j/2)} binomial(j-m-1, m-1)*binomial(n+1-j, m), where d(i) = A000166(i) are the derangement numbers.
EXAMPLE
a(3)=3 because we have 123, 231, and 312. The permutations (1)32, 21(3), and 3(2)1 do have isolated fixed points (shown between parentheses).
MAPLE
d[0] := 1: d[1] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*add(binomial(j-m-1, m-1)*binomial(n+1-j, m), m = 0 .. floor((1/2)*j)), j = 0 .. n) end proc: seq(a(n), n = 0 .. 22);
CROSSREFS
Sequence in context: A164511 A184256 A105050 * A100102 A208202 A206482
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 13 2011
STATUS
approved