Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A188999
Bi-unitary sigma: sum of the bi-unitary divisors of n.
70
1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 27, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 63, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 108, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 119, 84, 144, 68, 90, 96, 144, 72, 150, 74, 114, 104, 100
OFFSET
1,2
COMMENTS
The sequence of bi-unitary perfect numbers obeying a(n) = 2*n consists of only 6, 60, 90 [Wall].
Row sum of row n of the irregular table of the bi-unitary divisors, A222266.
LINKS
Krishnaswami Alladi, On arithmetic functions and divisors of higher order, J. Austral. Math. Soc. 23 (series A) (1977), 9-27.
József Sándor and Borislav Crstici, Perfect numbers: Old and new issues; perspectives, in Handbook of number theory, II, p. 45.
Charles R. Wall, Bi-unitary perfect numbers, Proc. Am. Math. Soc. 33 (1) (1972), 39-42.
Eric Weisstein's World of Mathematics, Biunitary Divisor.
Tomohiro Yamada, 2 and 9 are the only biunitary superperfect numbers, arXiv:1705.00189 [math.NT], 2017.
FORMULA
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd, a(p^e) = (p^(e+1)-1)/(p-1) -p^(e/2) if e is even.
a(n) = A000203(n) - A319072(n). - Omar E. Pol, Sep 29 2018
Dirichlet g.f.: zeta(s-1) * zeta(s) * zeta(2*s-1) * Product_{p prime} (1 - 2/p^(2*s-1) + 1/p^(3*s-2) + 1/p^(3*s-1) - 1/p^(4*s-2)). - Amiram Eldar, Aug 28 2023
EXAMPLE
The divisors of n=16 are d=1, 2, 4, 8 and 16. The greatest common unitary divisor of (1,16) is 1, of (2,8) is 1, of (4,4) is 4, of (8,2) is 1, of (16,1) is 1 (see A165430). So 1, 2, 8 and 16 are bi-unitary divisors of 16, which sum to a(16) = 1 + 2 + 8 + 16 = 27.
MAPLE
A188999 := proc(n) local a, e, p, f; a :=1 ; for f in ifactors(n)[2] do e := op(2, f) ; p := op(1, f) ; if type(e, 'odd') then a := a*(p^(e+1)-1)/(p-1) ; else a := a*((p^(e+1)-1)/(p-1)-p^(e/2)) ; end if; end do: a ; end proc:
seq( A188999(n), n=1..80) ;
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, # &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 76}] (* Michael De Vlieger, May 07 2017 *)
a[n_] := If[n==1, 1, Product[{p, e} = pe; If[OddQ[e], (p^(e+1)-1)/(p-1), ((p^(e+1)-1)/(p-1)-p^(e/2))], {pe, FactorInteger[n]}]]; Array[a, 80] (* Jean-François Alcover, Sep 22 2018 *)
PROG
(Haskell)
a188999 n = product $ zipWith f (a027748_row n) (a124010_row n) where
f p e = (p ^ (e + 1) - 1) `div` (p - 1) - (1 - m) * p ^ e' where
(e', m) = divMod e 2
-- Reinhard Zumkeller, Mar 04 2013
(PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
a(n) = vecsum(biudivs(n)); \\ Michel Marcus, May 07 2017
(PARI) a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 09 2017
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
R. J. Mathar, Apr 15 2011
STATUS
approved