Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A190088
Triangle of binomial coefficients binomial(3*n-k+1,3*n-3*k+1).
4
1, 1, 3, 1, 15, 5, 1, 36, 70, 7, 1, 66, 330, 210, 9, 1, 105, 1001, 1716, 495, 11, 1, 153, 2380, 8008, 6435, 1001, 13, 1, 210, 4845, 27132, 43758, 19448, 1820, 15, 1, 276, 8855, 74613, 203490, 184756, 50388, 3060, 17, 1, 351, 14950, 177100, 735471, 1144066, 646646, 116280, 4845, 19
OFFSET
0,3
COMMENTS
Row sums = A190089.
Diagonal sums = A190090.
EXAMPLE
Triangle begins:
1
1, 3
1, 15, 5
1, 36, 70, 7
1, 66, 330, 210, 9
1, 105, 1001, 1716, 495, 11
1, 153, 2380, 8008, 6435, 1001, 13
1, 210, 4845, 27132, 43758, 19448, 1820, 15
1, 276, 8855, 74613, 203490, 184756, 50388, 3060, 17
MATHEMATICA
Flatten[Table[Binomial[3n - k + 1, 3n - 3k + 1], {n, 0, 8}, {k, 0, n}]]
PROG
(Maxima) create_list(binomial(3*n-k+1, 3*n-3*k+1), n, 0, 12, k, 0, n);
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(3*n-k+1, 3*n-3*k+1), ", "))) \\ G. C. Greubel, Mar 04 2018
(Magma) /* As triangle */ [[Binomial(3*n-k+1, 3*n-3*k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 04 2018
CROSSREFS
Sequence in context: A324428 A131440 A269950 * A119301 A293157 A121335
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, May 04 2011
STATUS
approved