Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A191241
Reversion of x - x^2 - 2*x^5.
0
1, 1, 2, 5, 16, 56, 204, 759, 2880, 11132, 43732, 174122, 700952, 2847840, 11661592, 48080811, 199433880, 831649380, 3484523460, 14662036550, 61931353880, 262503848400, 1116179957160, 4759795460550, 20351410848288, 87229181620152, 374722175164232, 1613115479264852, 6957700944802160, 30064406772108544
OFFSET
1,3
COMMENTS
For the reversion of x - a*x^2 - b*x^5 (a!=0, b!=0) we have a(n) = Sum_{j=0..floor((n-1)/3)} a^(n-4*j-1)*b^j*binomial(n-3*j-1,j)*binomial(2*n-3*j-2,n-1)/n, n > 0.
FORMULA
a(n) = Sum_{j=0..floor((n-1)/3)} 2^j*binomial(n-3*j-1,j)*binomial(2*n-3*j-2,n-1)/n, n > 0.
PROG
(Maxima)
a(n):=sum(2^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1), j, 0, (n-1)/3)/n;
CROSSREFS
Sequence in context: A057973 A102461 A176332 * A052708 A149973 A149974
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 28 2011
STATUS
approved