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A labeled graph  is bipartite if its vertex set  can be partitioned into two

disjoint subsets  and ,  = ∪, such that every edge of  is of the form ( ),

where  ∈  and  ∈ .

Let  be a positive integer and  = {1 2     }. A labeled graph  is -

colorable if there exists a function  →  with the property that adjacent vertices

must be colored differently. Clearly  is bipartite if and only if  is 2-colorable.

Define  to be the number of -colorable graphs with  vertices. We have

1 = 1 for  ≥ 1 since a 1-colorable graph  cannot possess any edges. We also

have 1 = 1 for  ≥ 1, 2 = 2 for  ≥ 2, 32 = 7 by Figure 1, 33 = 8, 42 = 41 by
Figure 2, and 43 = 63. More generally, −1 = 2(−1)2− 1 since the total number
of labeled graphs with  vertices is 2(−1)2 and, of these, only the complete graph
cannot be (− 1)-colored.
Does there exist a formula for ? The answer is yes if  = 2, but evidently no

for  ≥ 3. We’ll examine this issue momentarily, but first define a related notion.
A -colored graph is a labeled -colorable graph together with its coloring func-

tion. Let  be the number of -colored graphs with  vertices. The point is that

a -colorable graph counts several times as a -colored graph. Clearly 1 = 1,

1 = , 22 = 6 by Figure 3, 23 = 15 by Figure 4, and 32 = 26 by Figure 5.

When  = 2, the following formulas can be proved [1, 2, 3]:
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For arbitrary , we have the following recursion [4, 5]:

 =

X
=0

µ




¶
2(−)−1

0Copyright c° 2003 by Steven R. Finch. All rights reserved.

1



Bipartite, -Colorable and -Colored Graphs 2

Figure 1: There are 7 labeled bipartite graphs with 3 vertices.

with initial conditions 0 = 1 and 0 = 0 for  ≥ 1. Alternatively, we have a

closed-form expression involving multinomial coefficients:

 =
X


µ


1 2     

¶
2
1
2(

2−21−22−···−2)

where the summation is over all nonnegative integer -vectors  = (1 2     )

satisfying 1+2+ · · ·+ = . There is, however, no known analogous formula for

 when  ≥ 3.
Computations show that [4, 6]©

2
ª∞
=1

= {2 6 26 162 1442 18306 330626 8488962   }
{2}∞=1 = {1 2 7 41 376 5177 103237 2922446   }

and suggest that 22 → 2 as →∞. We also have©
3

ª∞
=1

= {3 15 123 1635 35043 1206915 66622083 5884188675   }
{3}∞=1 = {1 2 8 63 958 27554   }

but there is insufficient data on 3 to clearly suggest the asymptotic behavior of

33. Prömel & Steger [7], however, proved that

lim
→∞




= !

for each  ≥ 2. In words, a random -colorable graph is almost surely uniquely -

colorable (up to a permutation of colors). This is an important result since it allows

us to utilize at least one term of the  asymptotics to estimate the growth of .
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Figure 2: There are 41 labeled bipartite graphs with 4 vertices.

Figure 3: There are 6 labeled 2-colored graphs with 2 vertices.
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Figure 4: There are 15 labeled 3-colored graphs with 2 vertices (these 9 plus the

preceding 6).

Figure 5: There are 26 labeled 2-colored graphs with 3 vertices.
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We turn now to a result due to Wright [8, 9, 10, 11, 12]: if  ≡  mod , where

0 ≤   , then

 ∼ ( ) · 2 12 (1− 1

)2 ·  ·

µ


ln(2) · 
¶−1

2

as →∞, where ( ) is a constant that depends on  only via its residue modulo
. In fact,

( ) = 
1
2 · (ln(2))−12 · (2)−−1

2 · ()

and the infinite series () will be defined for  = 2, 3 and 4 shortly.

0.1. 2-Colored Graph Asymptotics. To characterize the growth of , by

the above, it is sufficient to determine ( ) for each 0 ≤   . We have here

2() =

∞X
=−∞
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1
2
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(−)2+1

4
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2−
1
4
(−2)2 =

½
21289368272    if  = 0

21289312505    if  = 1

These two constants also appear with regard to the asymptotic enumeration of par-

tially ordered sets [13] and of linear subspaces of F2 [14], where F2 is the binary field
with arithmetic modulo 2. Therefore

(2 ) =

½
10000013097    = 1 +  if  = 0

09999986902    = 1−  if  = 1

where  = 13097396978    × 10−6. In fact, all of the constants ( ) we examine
are close to 1; thus we shall focus on difference with 1 henceforth.

0.2. 3-Colored Graph Asymptotics. We have here
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and therefore

(3 ) =

½
1 + 2 if  = 0

1−  if  = 1 or 2

where  = 17060611047× 10−8.
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0.3. 4-Colored Graph Asymptotics. All planar graphs are 4-colorable by the

famous Four Color Theorem. We have here [4, 6]©
4

ª∞
=1

= {4 28 340 7108 254404 15531268 1613235460 284556079108   }

{4}∞=1 = {1 2 8 64 1023 32596   }
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and therefore

(4 ) =

⎧⎨⎩ 1 +  if  = 0

1−  if  = 1 or 3

1−  + 2 if  = 2

where  = 42421496651    × 10−9 and  = 25731271141 × 10−12. A simple rela-
tionship between  and  is not apparent.

Higher-order asymptotics for  are possible, due to Wright [8]; we hope to

examine the corresponding constants later. Observe that terms beyond the first need

not necessarily apply for .

A random -colorable graph is almost surely connected [10, 12, 15] and is almost

surely -chromatic (meaning that  − 1 colors won’t suffice to color all  vertices).
The asymptotics discussed above therefore apply to these important subclasses as

well.

Enumerating unlabeled -colorable graphs (that is, non-isomorphic types of la-

beled -colorable graphs) is also a difficult computational problem [16]. A general

result due to Prömel [17] provides that ! is the associated asymptotic formula.
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