Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A201245
Number of ways to place 4 non-attacking ferses on an n X n board.
7
0, 0, 29, 661, 6285, 35378, 143787, 468529, 1301351, 3202970, 7170593, 14872997, 28969129, 53527866, 94568255, 160741233, 264175507, 421511954, 655152581, 994751765, 1478979173, 2157585442, 3093803379, 4367119121, 6076449375, 8343762538, 11318183177
OFFSET
1,3
COMMENTS
Fers is a leaper [1,1].
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, p.415
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
a(n) = (n^8 - 30n^6 + 48n^5 + 299n^4 - 912n^3 - 462n^2 + 4368n - 4200)/24, n>=3.
G.f.: -x^3*(2*x^8 - 55*x^7 + 230*x^6 - 254*x^5 - 225*x^4 + 173*x^3 + 1380*x^2 + 400*x + 29)/(x-1)^9.
MATHEMATICA
CoefficientList[Series[- x^2 (2 x^8 - 55 x^7 + 230 x^6 - 254 x^5 - 225 x^4 + 173 x^3 + 1380 x^2 + 400 x + 29)/(x-1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 30 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Nov 28 2011
STATUS
approved