Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of non-constructable Golay sequences of length L.
2

%I #14 Apr 06 2021 04:39:35

%S 4,8,0,0,128,128,64,64,2816,0,0,51712,8192

%N Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of non-constructable Golay sequences of length L.

%H Dragomir Z. Dokovic, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00034-X">Equivalence classes and representatives of Golay sequences</a>, Discrete Math. 189 (1998), no. 1-3, 79-93. MR1637705 (99j:94031).

%Y Cf. A185064, A208924, A208925, A208927, A208928, A208929.

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_, Mar 03 2012

%E a(11)-a(13) from _Vincenzo Librandi_, Nov 26 2020