Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A209269
a(1) = 1 and, for n >= 2, a(n) is the least integer such that the numerator of the continued fraction [a(1),a(2),...,a(n)] is a perfect square.
0
1, 3, 2, 5, 43, 522, 1104509, 60248974744, 2075863890266492169136, 10942918579397694712648387271683911959312808, 30436613005235318097155473477154291219175029919236526500330140104415890363628017565032
OFFSET
1,2
FORMULA
a(n) = (A086541(n) - A086541(n-2)) / A086541(n-1) (n >= 3). - Hiroaki Yamanouchi, Oct 03 2014
PROG
(PARI) v=[1]; for(k=1, 6, m=1; while(issquare(contfracpnqn(concat(v, [m]))[1, 1])==0, m++); v=concat(v, [m])); a(n)=if(n<2, 1, v[n]);
CROSSREFS
Sequence in context: A005265 A005266 A005267 * A373562 A244823 A286157
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 15 2013
EXTENSIONS
a(8)-a(11) from Max Alekseyev, Mar 18 2023
STATUS
approved