OFFSET
1,3
COMMENTS
Compare e.g.f. to the identity: let W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n!, then W( x - Sum_{n>=1} x^(n+1)/(n*(n+1)) ) = x.
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 26*x^4/4! + 237*x^5/5! +...
Let R(x) be the series reversion of e.g.f. A(x), then R(x) begins:
R(x) = x - x^2/(1*2) - x^3/(1*2*3) - x^4/(2*3*4) - x^5/(3*4*5) - x^6/(4*5*6) -...
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(x-x^2/2-sum(m=3, n, (m-3)!*x^m/m!) +x*O(x^n)), n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 15 2012
STATUS
approved