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Let p = 1 (mod 4) be a prime. From elementary number theory we know
that —1 is a quadratic residue modulo p, that is, there exists an integer k,
1 < k < p—1, such that ¥ = —1 (mod p). By Hensel’s lemma k lifts to a p-
adic integer (k) = k +a;p+agp? +---,0<a; < p— 1, such that a(k)? = —1
in the ring of p-adic integers Z,. In these notes we show that a(k) is equal to
the p-adic limit as n — oo of the integer sequence {Ly,n (k)}, where {L,(x)} is
the sequence of Lucas polynomials. We give similar results for the p-adic square
roots of —2 and —3.

1. Lucas polynomials

The n-th Lucas polynomial Ly, (z) (see A114525) is defined by
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L(n,z) is a monic polynomial and for prime p and integer k we have
L,(k) =k (mod p) (3)

by Fermat’s little theorem.

The Lucas polynomials are related to the Chebyshev polynomials of the first
kind at an imaginary argument by

L,(z) = 2i"T, (l;) : (4)

Proposition 1. For integer k and prime p, the sequence {L,, (k) : n > 1}
satisfies the congruences
Lyn (k) = Lyn-1 (k) (mod p") [n>1]. (5)

Sketch proof. Recall that an integer sequence {a(n)} satisfies the Gauss
congruences if

a(mp”) =a(mp"") (mod p") (6)


https://oeis.org/A114525

for all primes p and all positive integers m and r. A necessary and sufficient
condition for a sequence {a(n)} to satisfy the Gauss congruences is that the
series expansion of
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has integer coefficients. Using the generating function of the Lucas
polynomials it is straightforward to show that
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where F,,(z) denotes the n-th Fibonacci polynomial (see A168561);
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Thus the sequence {L, (k)} satisfies the Gauss congruences (6); congruence (5)
is simply the particular case m = 1.

F,(x) =

An immediate consequence of Proposition 1 is that the integer sequence
{Lpn (k) : n > 1} is a Cauchy sequence in the complete metric space of p-adic
integers Z,. Denote the limit of this Cauchy sequence by «(k);

a(k) =limit_ {n — oo} L,n (k).

It follows from (5) that for n > 1,

Ly (k) = Lp(k) (mod p)
= k (mod p)
by (3). Letting n — oo yields
a(k) =k (mod p). (7)

Proposition 2. For p an odd prime, the polynomial L, (z) — = of degree p
splits into linear factors over Z,, :

p—1
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https://oeis.org/A168561

Proof. The Chebyshev polynomials satisfy the composition identity [Rivlin]
T, (Tin(2)) = Tom(2). 9)

Using this and (4) we find that the Lucas polynomials satisfy the composition
identity
Ly (Lin(2)) = Lym(z)  [modd].

In particular, for odd prime p and integer k,

Ly (L (k)) = Lynss (k). (10)

Let n — oo in (10). Since polynomials are continuous functions on Z, we
obtain

L, (a(k)) = (k).

Thus each p-adic integer «(k), k € Z, is a root of L,(z) — x. Now by (7), the
p-adic integers a(0), a(1), ... ,a(p — 1) are distinct. We conclude that the
polynomial L,(x) — z of degree p splits into linear factors over Z, as

p—1

Ly(a) —z =[] (@~ a(k)). (11)

k=0

O

Using this result we can use Lucas polynomials to find some p-adic square
roots.

p-adic square roots of -1. Let p be a prime with p = 1 (mod 4). See
A002144. Then 22 + 1 divides the polynomial L,(z) — z in the ring Z [x].

Proof. Observe first that L, (v/—1) = v/—1. This easily follows from (4) and
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the fact that T, 5] = T, [ cos 3 = cos 3 by a well-known

property of Chebyshev polynomials. Since L,(z) — z is a monic polynomial of
degree p > 3 we can find an integral polynomial m(z) and integers a and b
such that L, () — z = m(z)(2? + 1) + ax + b. Setting x = /—1 yields
ayv/—1+b =0 and hence a = b = 0. Thus z? + 1 is a factor of the polynomial
Ly(z) —zinZ[z].O

From (11), it must be the case that 22 + 1 splits over the ring of p-adic
integers Z, as (z — a(k))(z — a(p — k)), where 0 < k < p — 1 satisfies k? + 1 =
0 (mod p).


https://oeis.org/A002144

For example, in the case p = 5, the polynomial Ls(x) — z factorises in Z [z] as
Ls(z) — x = x(2® + 1)(2? + 4) leading to the pair of factorisations in the ring
Z5 [.13]

P24+ 1= (@ —a(2) (@ - a3))

and
2 +4=(z—al)(z—a4))

where a(k) = limit_{n — oo} Lsn (k). The 5-adic integers «(k) are in the
OEIS as a(1) = A269591] a(2) = [A210850, a(3) =A210851 and a(4) =
A269592.

Here is Maple code to display the first one hundred 5-adic digits of a(2). The
program makes use of the recurrence a(n) = a(n —1)° 4+ 5a(n — 1)3 + 5a(n — 1),
with initial condition a(1) = k, which is satisfied by a(n) = Lz~ (k).

k:=2:

a := proc (n) option remember; if n = 1 then k else irem(a(n-1)"5 +
5a(n-1)"3 + 5a(n-1), 5°n) end if; end proc:

convert(a(100), base, 5);

p-adic square roots of —2. Let p be a prime with p = 1or 3 (mod 8) (these
are precisely the odd primes p such that 22 4+ 2 = 0 has a solution mod p: see
A033203). Then z? + 2 divides the polynomial L,(z) — z in the ring Z [z].

Proof. The proof is exacly similar to that just given. In order to show that

Ly (V72) = V=2 we use (4) and the fact that T, (f) - (@) )
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Thus 22 + 2 is a factor of the polynomial L,(z) — z in Z [z], and from (11) we

see that z2 + 2 factors over Z, as (z — a(k))(x — a(p — k)), where now
0 <k <p—1satisfies k2 +2 =0 (mod p).

For example, in the case p = 11, the polynomial L;;(x) — x factorises in Z [z]
as z(z% + 2)(z* + 422 + 1)(2* + 522 + 5) leading to the factorisation of 2% + 2
in the ring Z1; [z] as

22+ 2=(z - a(3)) (z - a(8)),

where a(k) = limit_{n — oo} Ly~ (k).
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In addition, we have the factorisations in Zi; [x] of the quartics
2t +4x? +1 = (x— a2)) (z — a(5) (z — a(6)) (x — a(9))
and

2t 4522 +5 = (z — a(l)) (z — a(4) (z — (7)) (z — a(10)) .

p-adic square roots of -3. Let p be a prime with p =1 (6). See A002476.
Then z? + 3 divides the polynomial L,(z) — z in the ring Z [z].

Proof. Again, the proof follows that given above. In order to show that

Ly (vV=3) = V=3 we use (4) and the fact that T, <ﬁ> o <<ﬁ>> i
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Thus, for prime p of the form 6k + 1, the quadratic z* + 3 factors over Z,, as
(x — a(k))(x — a(p — k)), where now 0 < k < p — 1 satisfies k% + 3 =
0 (mod p). For example, in the case p = 7, the polynomial L;(z) — = factorises
in Z [z] as z(2® + 3)(z* + 422 + 2) leading to the factorisation of 2% + 3 in the
ring Zr [x] as

22 +3 = (z - a(2) (= - a(5))

where a(k) = limit {n — oo} Lz~ (k). The 7-adic integers a(2) and «(5) are
recorded in the OEIS as [A290796/ and [A290797.

In addition, we have the factorisation in Z7 [x] of the quartic
et 422 +2 = (z — (1)) (z — a(3) (z — a(4)) (z — a(6)).

We finish with a conjecture: for odd prime p, the sequence of polynomi-
als {Lyn(x) — 2z :n > 1} is a divisibility sequence; that is, if n divides m then
L, (x) — = divides Lym (x) — z in the polynomial ring Z[x].
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