Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A213665
Number of dominating subsets of the graph G(n) obtained by joining a vertex with two consecutive vertices of the cycle graph C_n (n >= 3).
2
13, 23, 43, 79, 145, 267, 491, 903, 1661, 3055, 5619, 10335, 19009, 34963, 64307, 118279, 217549, 400135, 735963, 1353647, 2489745, 4579355, 8422747, 15491847, 28493949, 52408543, 96394339, 177296831, 326099713, 599790883, 1103187427
OFFSET
3,1
LINKS
S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
FORMULA
a(n) = Sum_{k=1..n+1} A213664(n,k).
a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 6.
G.f.: x^3 * (13+10*x+7*x^2) / (1-x-x^2-x^3). - R. J. Mathar, Jul 03 2012
EXAMPLE
a(3)=13 because G(3) is the square abcd with the additional edge bd; all nonempty subsets of {a,b,c,d} are dominating, with the exception of {a} and {c}: 2^4 - 1 - 2 = 13.
MAPLE
a[3] := 13: a[4] := 23: a[5] := 43: for n from 6 to 42 do a[n] := a[n-1]+a[n-2]+a[n-3] end do: seq(a[n], n = 3 .. 42);
MATHEMATICA
CoefficientList[Series[(13+10*x+7*x^2)/(1-x-x^2-x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 03 2012 *)
LinearRecurrence[{1, 1, 1}, {13, 23, 43}, 40] (* Harvey P. Dale, Dec 11 2012 *)
CROSSREFS
Cf. A213664.
Sequence in context: A240113 A256177 A320752 * A068712 A103166 A154863
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 30 2012
STATUS
approved