Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215928
a(n) = 2*a(n-1) + a(n-2) for n > 2, a(0) = a(1) = 1, a(2) = 2.
9
1, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681, 543339720, 1311738121, 3166815962, 7645370045, 18457556052, 44560482149, 107578520350, 259717522849
OFFSET
0,3
COMMENTS
Number of 132-avoiding two-stack sortable permutations. See Theorem 2.2 of Egge and Mansour which gives a generating function equation P(x) = 1 + x + 2*x^2 + x*(P(x) - 1 - x) + x^2*(P(x) - 1) + x*(P(x) - 1 - x).
Row sums of triangle A155161. - Philippe Deléham, Aug 31 2012
a(n) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 1, 1, 1; 0, 1, 0] or [1, 1, 0; 1, 1, 1; 1, 1, 0] or [1, 1, 1; 0, 0, 1; 1, 1, 1] or [1, 0, 1; 1, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
For n > 0, A001333(n)/a(n) = A001333(n)/A000129(n), which converges to sqrt(2). - Karl V. Keller, Jr., May 17 2015
LINKS
Karl V. Keller, Jr., Table of n, a(n) for n = 0..500
Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
E. S. Egge and T. Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.
FORMULA
a(n) = 2*a(n-1) + a(n-2) for n > 2, a(0) = a(1) = 1, a(2) = 2.
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 + x)))) = (1 - x - x^2) / (1 - 2*x - x^2).
a(n) = A000129(n) unless n = 0.
a(n+1) - a(n) = A078057(n-1).
PSUM transform is A024537.
PSUMSIGN transform is A097075.
INVERT transform of A000045(n). [Corrected by Wolfdieter Lang, Dec 07 2020]
G.f.: 1/( 1 - (Sum_{k>=0} x*(x + x^2)^k) ) = 1/( 1 - (Sum_{k>=1} x/(1 - x^2))^k) ). - Joerg Arndt, Sep 30 2012
G.f.: 1 + Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 + x)/( x*(4*k + 4 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n) = A069306(n-1) if n > 1. - Michael Somos, Oct 23 2018
E.g.f.: 1 + exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Franck Maminirina Ramaharo, Nov 29 2018
EXAMPLE
G.f. = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 70*x^6 + 169*x^7 + 408*x^8 + 985*x^9 + ...
MAPLE
f:= gfun:-rectoproc({a(n)=2*a(n-1)+a(n-2), a(0)=1, a(1)=1, a(2)=2}, a(n), remember):
map(f, [$0..100]); # Robert Israel, May 29 2015
MATHEMATICA
CoefficientList[Series[(1 - x - x^2)/(1 - 2 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 14 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / (1 - x / (1 - x / (1 - x / (1 + x)))) + x * O(x^n), n))};
(Magma) [1] cat [ n le 2 select (n) else 2*Self(n-1)+Self(n-2): n in [1..35] ]; // Vincenzo Librandi, May 14 2015
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Aug 27 2012
STATUS
approved