Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A218482
First differences of the binomial transform of the partition numbers (A000041).
30
1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
OFFSET
0,3
COMMENTS
a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions.
From Gus Wiseman, Dec 12 2022: (Start)
Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are:
() ((1)) ((2)) ((3))
((11)) ((12))
((1)(1)) ((21))
((111))
((1)(2))
((2)(1))
((11)(1))
((1)(1)(1))
The case of constant lengths is A101509.
The case of strictly decreasing lengths is A129519.
The case of sequences of partitions is A141199.
The case of twice-partitions is A358831.
(End)
LINKS
FORMULA
G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
MAPLE
b:= proc(n) option remember;
add(combinat[numbpart](k)*binomial(n, k), k=0..n)
end:
a:= n-> b(n)-b(n-1):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2014
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-1, k]*PartitionsP[k+1], {k, 0, n-1}], {n, 1, 30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
PROG
(PARI) {a(n)=sum(k=0, n, (binomial(n, k)-if(n>0, binomial(n-1, k)))*numbpart(k))}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(prod(k=1, n, (1-x)^k/((1-x)^k-X^k)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(m=0, n, x^m*(1-x)^(m*(m-1)/2)/prod(k=1, m, ((1-x)^k - X^k))), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(m=0, n, x^(m^2)*(1-X)^m/prod(k=1, m, ((1-x)^k - x^k)^2)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(exp(sum(m=1, n+1, x^m/((1-x)^m-X^m)/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(exp(sum(m=1, n+1, sigma(m)*x^m/(1-X)^m/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(prod(k=1, n, (1 + x^k/(1-X)^k)^valuation(2*k, 2)), n)}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2012
STATUS
approved