Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A225663
Number of nonrepeating vectors in a counting procedure that starts with the digits of (n base 5).
1
6, 5, 3, 4, 6, 4, 3, 0, 2, 4, 2, 1, 0, 2, 4, 1, 2, 2, 6, 4, 4, 4, 4, 4, 6, 2, 1, 1, 4, 4, 1, 0, 2, 4, 6, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 6, 1, 0, 2, 4, 4, 1, 2, 2, 4, 4, 2, 2, 5, 4, 6, 4, 4, 4, 4, 4, 4, 4, 6, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
0,1
COMMENTS
The counting procedure and "eventually period 6 theorem" are introduced at A225660. Conjecture: if a(n) > 8, then a(n) is odd.
LINKS
EXAMPLE
To see that a(9) = 4, note that 9 = (14 in base 4), and write 14 -> 01011 -> 32 -> 0011-> 22 -> 002 -> 201 -> 111 -> 03 -> 1001 -> 22. This shows that the 4 nonrepeating vectors are (1,4), (0,1,0,1,1), (3,2), and (0,0,1,1). After (0,0,1,1) the cycle (2,2) -> ... -> (2,2) has length 6, so that the remainder of the sequence of vectors is periodic with period 6.
MATHEMATICA
Clear[a, t]; Flatten[Table[a = {t = IntegerDigits[n, 5]};
While[Count[a, t] =!= 2, AppendTo[a, t = BinCounts[t, {0, Max[t] + 1, 1}]]]; First[Position[a, Last[a]]] - 1, {n, 0, 180}]] (* Peter J. C. Moses, May 09 2013 *)
CROSSREFS
Cf. A225660 (base 2), A225664 (base 10), A225665 (base 16)
Sequence in context: A153330 A225661 A225662 * A225664 A349249 A225665
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, May 12 2013
STATUS
approved