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Abstract. We illustrate infinite walks on the square lattice by interpretation

of binary sequences of zeros and ones as directives to a single pen plotter. Each
digit of the sequence tells the plotter to walk one edge of the lattice, and to

change its direction to the right or left thereafter if the digit was a zero.

1. Introduction

Any binary stream of zeros and ones defines a walk on a simple square lattice
by rules that could be used to illustrate Lindenmayer systems (supposed the digits
were composed by formal rules):

• Start at the position (0,0) and point into the direction (1,0)=R.
• Read the next digit from the binary stream, from left to right. If the digit

is bi = 1, move ahead by one unit into the pointing direction. Digits in the
binary stream are enumerated by i ≥ 1.
• If the next digit in the stream is bi = 0, move ahead in the pointing direction

by one unit. If i was odd, change the pointing direction by turning left—
from R(ight) to U(p), from U(p) to L(eft), from L(eft) to D(own), or from
D(own) to R(ight). If i was even, change the pointing direction by a right
turn—from R(ight) to D(own), from D(own) to L(eft), from L(eft) to U(p),
or from U(p) to R(ight).
• Read the next digit bi+1 from the stream, and update the position and

pointing direction again according to the rules of the second and third
bullet.

The rules define a “Turing machine plotter” with a state held in three internal
registers: the two Cartesian components of the current position and one of four
possible pointing directions {RULD}. The binary sequences serve as programs
that feed the plotter.

2. Periodic Binaries and Patterns

The simplest programs are the sequences

(1) 00000000000000000000000000000 . . . = 0 = 0,
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which represent a left turn, right turn, left-turn, right-turn. . . staircase walk along
a diagonal and [6, A000012]

(2) 11111111111111111111111111111 . . . = 1 = 1

which walks straight along the horizontal axis to infinity. The bar over one or more
binary symbols denotes periodic repetition of the digit in base 2.

Placing an implicit dot at the very start of the sequence, the binary sequence
represents an associated constant between zero and one,

(3) c =
∑
i≥1

bi
2i

; bi = bc2ic mod 2.

If the number has a binary representation which is periodic, bk+p = bk with some
period length p, the constant c is a rational number deduced by a geometric series:

(4) b1b2 . . . bp  c = (b1 +
b2
2

+
b3
22

+ · · · bp
2p−1

)
1

2

+ (b1 +
b2
2

+
b3
22

+ · · · bp
2p−1

)
1

2p+1
+ (b1 +

b2
2

+
b3
22

+ · · · bp
2p−1

)
1

22p+1
+ · · ·

= (b1 +
b2
2

+
b3
22

+ · · · bp
2p−1

)
2p−1

2p − 1

Note that there is no 1-to-1 correspondence between the numbers c and walks
on the square lattice. One cannot, for example, walk counter-clockwise around a
unit square, which would require the steps turn left, turn left, turn left,. . . because
the rules for the plotter do not permit two consecutive steps of turns in the same
sense (since this requires adjacent zeros of the same parity i of their indices which
cannot be established).

That is not necessarily a constraint to the artist, because one could generate a
figure twice as large by insertion of 1’s, so the walk around a 2× 2 square could be
generated by the decoding of [6, A000035]

(5) 101010101010101 · · · = 10  c = 1/3.

Insertion of another pair of 1’s in regular intervals generates a walk around a 4× 4
square via

(6) 111011101110111011101110 . . . = 1110  c = 14/15.

If there is the same number of left and right turns and if the period length is
even, the figure may return to the horizontal line and look like an alley. Such an
alley generated by a sequence of period p = 20 is shown in Figure 1, and by another
sequence of period p = 3 in figure 2.

An example with a period length of p = 15 is Figure 3, drawn with sequence
A011659 of the OEIS [6].

If the sequence has a period of even length and does not have matching numbers
of 1’s that let the graph return to the horizontal line, the pattern repeats but moves
away from the horizontal line at some average angle (Figure 4).
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 0  5  10  15  20  25  30  35

periodic 11010010111010010111 = c=57593/69905

Figure 1. An infinite series of T-shapes from a periodic binary
with essentially two left turns, four right turns and two left turns,
where marked by the 8 zeros. The first four periods are shown.

 0  10  20  30  40  50  60

periodic 001 = c = 1/7

Figure 2. An infinite series of pulses from a binary with period
001, sequence A079978 [6].
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Figure 3. A shape generated from the periodic 000111101011001.
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-5  0  5  10  15  20  25  30  35  40

periodic 01110101011110011111 = c= 481183/1048575

Figure 4. This pattern from a sequence with period p = 20 re-
peats with a sloping base.
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Spiral A003982

Figure 5. The figure from 100010000000100000000000. . . [6, A003982]

3. Spirals

Walks along spirals are generated by aperiodic binary sequences with runs of
1’s or 0’s which become longer after some regular number of turns. If the distance
between the spiral arms increases at a constant rate, the pivotal 0’s or 1’s between
these runs at the turns must have indices i that are generated by second order
polynomials.

Figure 5 shows a spiral walk defined by a binary sequence where 1’s settle only
at positions i = 1, 5, 13, . . . as listed in [6, A001844], computed by the polynomial
i = 2n(n+ 1) + 1 at n = 0, 1, 2, . . .. The associated constant is [6, A190406]

(7) c =
∑
n≥0

1/22n(n+1)+1 =
1

2

∑
n≥0

1/4n(n+1) =
1

4

1

(1/4)1/4
2(1/4)1/4

∑
n≥0

(
1

4
)n(n+1)

=
1

23/2
ϑ2(0, 1/4) ≈ 1

23/2
× 1.502947261299 ≈ 0.531372100115277 . . .

in terms of a Jacobi Theta Functions [1, 16.27.2].
The spiral in Figure 6 is created by a binary sequence with zeros only at positions

bi = 0 where i = 1, 3, 5, 9, 13, 19, . . . are the elements of the OEIS sequence A080827
[6].

There are two subsequences of i, the one is i = 1, 5, 13 . . . already mentioned
in the previous example. The other subsequence is i = 3, 9, 19, . . . shown in [6,
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-6 -4 -2  0  2  4  6

01010111011101111101111101... with zeros only at A080827

Figure 6. A spiral from a sequence with positions of zeros at 1, 3,
5, 9, 13, 19,. . . with first order differences increasing by 2 at regular
intervals.

A058331] which defines the constant [1, 16.27.3]

(8)
1

23
+

1

29
+ · · · =

∑
n≥1

1

22n2+1
=

1

2

∑
n≥1

1

4n2 =
1

4
2
∑
n≥1

1

4n2 =
1

4
[ϑ3(0, 1/4)− 1]

≈ 1

4
[1.507820129860194313665002 . . .− 1].

Combined with (7), the constant associated with Figure 6 is

(9)

c = 1− (
1

21
+

1

23
+

1

25
+

1

29
+ . . .) = 1−

{
1

23/2
ϑ2(0, 1/4) +

1

4
[ϑ3(0, 1/4)− 1]

}
≈ 0.34167286741967428610386959 . . .

“Avoided” spirals appear if the turns are alternatingly right and left for a qua-
dratic binary. An example is Figure 7 from the sequence 10010000100000010000000010 . . .
of the characteristic function of squares [6, A010052].
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Characteristic function of squares

Figure 7. Walk with bi = 1 if i is a square, bi = 0 otherwise.
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slope 1/sqrt(2)

Figure 8. The figure from A080764, slope of 1/
√

2.

4. First differences of Beatty sequences

Define Beatty sequences of irrational numbers α by

(10) B(n) ≡ bnαc, n ≥ 0,

which have average slope α as a function of n. For α < 1, the first differences form
a binary sequence (called the characteristic sequence of slope α [5]),

(11) bi = b(i+ 1)αc − biαc.
For some inverse square roots α, the walks in that family of bi are displayed in
Figures 8–17.
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Figure 9. Slope of α = 1/
√

6 in (11).
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Figure 10. Slope of α = 1/
√

7 in (11).



10 RICHARD J. MATHAR

-350

-300

-250

-200

-150

-100

-50

 0

 50

-400 -350 -300 -250 -200 -150 -100 -50  0  50

slope 1/sqrt(8)

Figure 11. Slope of α = 1/
√

8 in (11).
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Figure 12. Slope of α = 1/
√

11 in (11).
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Figure 13. Slope of α = 1/
√

12 in (11).
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Figure 14. Slope of α = 1/
√

13 in (11).
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Figure 15. Slope of α = 1/
√

17 in (11).
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Figure 16. Slope of α = 1/
√

19 in (11).
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Figure 17. Slope of α = 1/
√

20 in (11).
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-50 -40 -30 -20 -10  0  10  20  30

c=1/sqrt(2)
c=1/sqrt(3)
c=1/sqrt(5)

Figure 18. The sequences of binary expansions of 1/
√
n for

n = 2, 3 and 5. They start 10110101000001. . . ([6, A004539]),
100100111100110100111. . . and 01110010011111001001. . .

The purpose of Figures 18–20 is to show that these square roots themselves do
not generate regular patterns. They are nice proposals for building baseplates in
the Bauhaus style.
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Figure 19. The sequence of the binary expansion of
√

3/2
1101110110110011110101. . . [6, A004547].
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Figure 20. The sequence of the binary expansion of
√

5/4
1000111100011011101111. . . [6, A004555].



WALKS BY A TURING PLOTTER 19

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0  20  40  60  80  100  120  140

slope 1/phi

Figure 21. Slope of 1/ϕ, where ϕ = (1 +
√

5)/2 is the golden ratio.

Figure 21 can be constructed by insertion of the inverse golden ratio into (11), or
by using the binary digits of the Rabbit Constant [6, A014565,A005614][3, §10.10][4]

(12) 101101011011010110101 . . . c ≈ 0.70980344286129131464178 . . .
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c=pi/4

Figure 22. Walk of the sequence of the binary expansion of
c = π/4, 1100100100001111110. . . [6, A004601]

5. Important irrationals

Curiosity about the walks generated by the binary expansions of π and log 2
arises due to some regularity in their expansion in base 16 [2]. Figures 22 and 23,
however, do not display any striking features.
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Figure 23. Walk of the sequence of the binary expansion of
c = ln 2, 101100010111001000. . . [6, A068426]
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Figure 24. From the sequence of the binary expansion of c =
e/4, 101011011111100001010. . . [6, A004593]

Not much is expected from the binary expansions of constants like the base of
the natural logarithm (Figure 24) or the Euler-Mascheroni constant (Figure 25).
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Figure 25. From the sequence of the binary expansion of c = γ,
1001001111000100011001111. . . [6, A104015]
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A003849

Figure 26. The Fibonacci Word defined in [6, A003849].

6. Fibonacci Words

Self-similarity is basically enforced by binary sequences generated by morphisms
and Fibonacci words. An illustration of this kind is Figure 26 with a sequence

(13) 0100101001001010010 . . . ; c ≈ 0.2901965571387086853582

define by applying ad infinitum the morphism 0 → 01 and 1 → 0 starting from a
single 0.

Another example is Figure 27 with much richer over-plotting, representing c ≈
0.58266130570818070796381.
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