Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A232240
A walk based on the digits of the golden ratio phi = (1+sqrt(5))/2 (A001622).
1
1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 8, 8, 7, 6, 5, 4, 5, 6, 7, 8, 9, 8, 9, 8, 7, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 7, 8, 7
OFFSET
1,2
COMMENTS
Phi = 1.61803398874989...
Between 1 and 6 we place 2, 3, 4 and 5.
Between 6 and 1 we place 5, 4, 3 and 2.
Between 1 and 8 we place 2, 3, 4, 5, 6 and 7.
Between 8 and 0 we place 7, 6, 5, 4, 3, 2 and 1, and so on.
This gives 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, ...
This could be called a walk (or promenade) on the digits of phi.
LINKS
MATHEMATICA
dgphi[{a_, b_}]:=Which[a<b, Range[a, b-1], a>b, Range[a, b+1, -1], True, {a}]; dgphi/@ Partition[RealDigits[GoldenRatio, 10, 30][[1]], 2, 1]// Flatten (* Harvey P. Dale, Mar 21 2020 *)
CROSSREFS
Sequence in context: A271832 A063260 A271859 * A073793 A017891 A017881
KEYWORD
nonn,easy,base
AUTHOR
Philippe Deléham, Nov 20 2013 at the suggestion of N. J. A. Sloane
STATUS
approved