OFFSET
1,2
COMMENTS
LINKS
Alois P. Heinz, Rows n = 1..150, flattened
FORMULA
Row n: (d(n), f(2), f(3),..., f(n-1)), where d(n) = (number of divisors of n) = (number of constant partitions of n), and f(k) = number of nonconstant partitions of n, for k = 2,3,...,n-1.
EXAMPLE
First ten rows:
1
2
2 .. 1
3 .. 1 .. 1
2 .. 2 .. 2 .. 1
4 .. 2 .. 2 .. 2 .. 1
2 .. 3 .. 4 .. 3 .. 2 .. 1
4 .. 3 .. 5 .. 4 .. 3 .. 2 .. 1
3 .. 4 .. 6 .. 6 .. 5 .. 3 .. 2 .. 1
4 .. 4 .. 8 .. 9 .. 6 .. 5 .. 3 .. 2 .. 1
(row 6) = (4,2,2,2,1). The 5 numbers in (4,2,2,2,1) count these partitions: (6, 33, 222, 1111); (51, 42); (411, 321); (3111, 2211); (211111). ("Constant partition" is exemplified by 6, 33, 222, 1111; i.e., all the parts are the same number.)
MATHEMATICA
t = Map[Flatten[{Length[#[[1]]], Transpose[Tally[Map[Length, #[[2]]]]][[2]]} &[GatherBy[IntegerPartitions[#], Length[Union[#]] > 1 &]]] &, Range[3, 20]] u = Flatten[t]; Flatten[Prepend[u, {1, 2}]]
(* Peter J. C. Moses, Jan 21 2014 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Jan 22 2014
STATUS
approved