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In earlier essays [1, 2], we examined 1-dimensional Brownian motion starting at 0;
here, we generalize. A d-dimensional stochastic process {W; : ¢t > 0} is a Brownian
motion with arbitrary starting point W, if the component processes

Wix —Woa, Wia —Woa, ..., Wea— Wiy

are independent 1-dimensional Brownian motions starting at 0 and, further, are in-
dependent of Wy 1, Wy, ..., Woa.

It is remarkable that d-dimensional Brownian motion can be used to represent the
solution of the heat PDE [3, 4]:

1
%:§Au, t>0, £ €RY,
u(0,€) = f(&), f:R?— R piecewise continuous

in the following sense:

u(t,§) = E(f(W)[Wo =€)
_ 1 € —w?
= W/f(w) exp (— 57 >dw.

As a corollary, if f is the Dirac impulse at 0, then u simplifies to

1 2
u(t,§) = (e exp <—%> ;

that is, the heat kernel coincides with the Brownian transition density starting at 0.

Also, let D denote an open, simply connected domain in R? with piecewise smooth,
closed, orientable boundary C. The solution of the Laplace PDE (Dirichlet boundary
value problem):

Av =0, ceD,
v(€) =g(&), &€C,g:C — R piecewise continuous
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can be written as
v(§) = E(g(W:) [Wo = ¢§)

where 7 is the lifetime or first exit time of Brownian motion in D:
T=inf{t>0:W; ¢ D}.

Consequently, if C = CoU Cy, CoNCy = 0 and g(&) = k for £ € Cy, then v(§) is
the probability that a Brownian particle which starts at & € D stops at some point
ne Cl.

These two examples are special cases of a more general principle that solutions of
any parabolic or elliptic PDE can be represented as expectations of certain stochastic
functionals. (A hyperbolic PDE such as the wave equation 0*u/dt?* = (1/2)Au
apparently cannot be solved in this manner.)

So far we have seen how probability is a servant of analysis. An example of how
analysis serves probability is that the expected lifetime v(£) = E (7| W = &) satisfies
the Poisson PDE

Av=-=2  £e€D,
{ v(€) =0, cEeC.

For instance, if D is the ball of radius r in R centered at 0, then vp(£) = (r?>—|¢[%)/d.
In the remainder of this essay, let d = 2. If T" is the equilateral triangular region in
R? with vertices (0,2a/3), (£a/v/3, —a/3), then

vp(z,y) = 1 (y—ﬁx—%a) <y+\/§x—§a) <y+1a>.

2a 3

If S is the square region in R? with vertices (+b, £b), then [5]

) = 25 T (B0 g (B (@)

™ = (2k+ 1 2b 2

The lifetime functions vp(z,y), vr(z,y) and vg(x,y) are each maximized when z =
y = 0. Define, for b =1/2,

v = vs(0,0) = % i (;l;—i)f)g {1 — sech <%)} — 0.1473427065....

This constant will be useful in the following; we wonder whether it has a closed-form
expression.

When r =1/y/7, a = v/3 and b = 1/2, each of D, T and S have area 1 and

vp(0,0) = &£ = 0.159... > v5(0,0) = 7 = 0.147... > vp(0,0) = 22 = 0.128....
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In fact, among all planar regions of fixed area, the disk possesses the longest lifetime
[6]. No such region with shortest lifetime exists, for consider the ¢ x (1/¢) finite strip
as ¢ — 00.

When r =1, a =3 and b = 1, each of D, T and S have inradius 1 (meaning the
radius of the largest inscribed disk is unity) and

vp(0,0) = 3 = 0.5 < vg(0,0) = 4y = 0.589... < v7(0,0) = 2 = 0.666....

Clearly, among all planar regions of fixed inradius, the disk possesses the shortest
lifetime. By way of contrast with the preceding, finding such a region with longest
lifetime is an unsolved problem. Let

K =sup sup E(7|Wy = (z,9)),
D (z,y)eD

where the outer supremum is over all simply connected domains D in R? of unit
inradius; thus K > 2/3. The 2 x oo infinite strip improves this inequality to K > 1
and is the best such convex domain [7, 8]. Bafiuelos & Carroll [9, 10] demonstrated
that 1.584 < K < 3.228; they speculated that the associated nonconvex domain D is
extremal for certain other optimization problems as well.

0.1. Fundamental Drum Frequency. The bass tone of a kettledrum, whose
head shape is a simply connected domain D in R?, is the square root of the smallest
eigenvalue \ of [11, 12]
Au=—-Au, €E€D,
{ u(§) =0, ¢eC.

For instance, if D is the disk of radius r centered at (0,0), then the first eigenfunc-
tion/eigenvalue pair is

un(e,y) = J <@> o= (3—)

r r

where Jy(2) is the zeroth Bessel function of the first kind and jy = 2.4048255576... is
its smallest positive zero. If T' is the equilateral triangular region of height a centered
at (0,a/6), then [13, 14]

uro =i (2 (3 20) Yoo (2 (o Vo2 )-an (2 (o 20)).
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If S is the square region of side 2b centered at (0,0), then

2

ug(x )_COS<H>COS<@> As = —
T ) T

When D, T and S each have area 1,

Ap = mjg =18.168... < Ag = 27° = 19.739... < Ap = 452 = 22.792...

The Faber-Krahn inequality states that, among all planar regions of fixed area, the
disk possesses the lowest bass tone. No such region with highest bass tone exists, for
consider the ¢ x (1/c) finite strip as ¢ — oc.

When D, T and S each have inradius 1,

Ap =ja =5.783...> \g =T =4.934... > \p = 4 = 4.386....

Clearly, among all planar regions of fixed inradius, the disk possesses the highest bass
tone. Finding such a region with lowest bass tone is an unsolved problem. Let

A =inf )\D
D

where the infimum is over all simply connected domains D in R? of unit inradius;
thus A < 47%/9. The 2 X oo infinite strip improves this inequality to A < 72/4 =
2.467... and is the best such convex domain [15, 16, 17]. In the other direction, Makai
[18, 19, 20, 21, 22] proved that A > 1/4. The best bounds currently known [9] are
0.6197 < A < 2.1292 and the associated nonconvex domain D is conjectured to be
the same as before.

What does this have to do with Brownian motion? We give just one (of several)
formulas [10, 23]:

ADZQSup{cZOZ sup E(GCT|W0:(xay))<OO}

(z,y)eD

for bounded, simply connected D. In words, the fact that Ap > A/p? > 0 for D of
inradius p means that if a drum produces an arbitrarily low bass tone, then it must
contain an arbitrarily large circular subdrum.

0.2. Torsional Rigidity. Let us return to the expected lifetime function v(zx,y)
and evaluate not its maximum value in the domain D, but rather twice its average
value

pe—2 /E<T|Wo:<x,y>>dxdy.

area(D)
D
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For instance, if D is the disk of radius r centered at (0,0), then up, = r2/2. If T is
the equilateral triangular region of height a centered at (0,a/6), then u; = a?/15. If
S is the square region of side 2b centered at (0,0), then [5]

402 192 & 1 (2k + )7
= —|1-—=—F) ————tanh [ ~—r
s 3 ™ L 2k ) ( 2 )

1
= Zb2(2.2492322392...) = b*(0.5623080598...) = 4b*(0.1405770149...).

Again, we wonder about the possibility of closed-form evaluation.
When r = 1//7, a = v/3 and b = 1/2,

fip = 2= = 0.159... > pg = 0.140... > pip = ¥2 = 0.115....

This can be expressed in the language of elasticity theory. Poélya [24, 25, 26, 27]
proved Saint Venant’s conjecture that, among all cylindrical beams of prescribed
cross-sectional area, the circular beam has the highest torsional rigidity. No such
beam with lowest torsional rigidity exists, for consider the ¢ x (1/c¢) rectangle as
¢ — 00.

Whenr=1,a=3and b =1,

pp =1 =05 < g =0.562... < jip = 2 = 0.6.

Among all cylindrical beams of prescribed cross-sectional inradius, the circular beam
has the lowest normalized torsional rigidity (normalized by area, as defined earlier).
Finding such a beam with highest normalized torsional rigidity is an unsolved prob-
lem. Let

M =sup pp
D

where the supremum is over all simply connected domains D in R? of unit inradius;
thus M > 3/5. The 2 X ¢ rectangle improves this inequality, as ¢ — oo, to M > 4/3
and is the best such convex domain [28]. For nonconvex domains, we have the upper
bound 6.456 [9], but little else is known about this problem.

0.3. Conformal Mapping. If E is an open, simply connected region in C, define
p(E) to be the inradius of £. The univalent Bloch-Landau constant © is given
by [29]

© = inf p(f(D))

where the infimum is over all one-to-one analytic functions f defined on the open
unit disk D satisfying f(0) = 1, f/(0) = 1. Let g denote the conformal mapping of
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D onto the infinite strip —7/4 < Im(z) < 7/4:

1 1+ 2 2, 2+l
o=t (1) 2

1—=2 :02k~|—1

hence © > 7/4. Szego [30, 31] further proved that, if f(D) is convex, then p(f(D)) <
p(g(D)). For the nonconvex scenario, the best bounds currently known [9, 32, 33] are
0.57088 < © < 0.65642 and the associated nonconvex region f(D) is conjectured to
be the same as the nonconvex domain for the constants K and A.

0.4. Addendum. The constant v indeed has a closed-form expression [34, 35]:

1111
FYCRRERLN
4 447272747 4

11
B(l=2
(33)

where ,F, is the generalized hypergeometric function [36] and B is the Euler beta
function (B(z,y) = I(1,z,y) in [37]). An interesting double series representation:

1)
1
= 0.1473427065... = 5(0.2946854131...)

(-1
ZZ 2m—1)2n—1)[(2m —1)2+ (2n — 1)

m=1n=1

follows from a formula in [38] which, in turn, was corrected in [39]. See also [40].
Both A and p can be defined via the calculus of variations [26]. It is more cus-
tomary to take area(D)u as torsional rigidity and this is equal to [41, 42]

1 16 & 1 (2k+ )7
— —— Y ————coth | ———— ] = 0.0260896517...
12 w2k + 1) ( 2 >

for an isosceles right triangle with sides 1, 1, v/2 and [43, 44]
17v3 1 & 1 (2k +1)m/3 (2k + 1)m
—_— = — —— < 2tanh | ———— | — h|——
9[ 19 7T5Z(2k g { tan ( 5 9tan 23 +
. (2k+ )7 ) . ((2k+1)7r)H
9v/3 sech +27V/3sin | ————
-y Sva 3
= 0.0044516625... = %(0.0079140667...)
for a 30°-60°-90° triangle with sides 1/2, v/3/2 and 1. The corresponding value for
a regular hexagon of unit side has attracted considerable attention [45, 46, 47, 48] —

see history in [42] — a complicated formula in [49] gives ~ 1.035459, as reported in
[50], and verifies an unpublished calculation in [51].
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