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In earlier essays [1, 2], we examined 1-dimensional Brownian motion starting at 0;

here, we generalize. A -dimensional stochastic process { :  ≥ 0} is a Brownian
motion with arbitrary starting point 0 if the component processes

1 −01 2 −02      −0

are independent 1-dimensional Brownian motions starting at 0 and, further, are in-

dependent of 01, 02,   , 0.

It is remarkable that -dimensional Brownian motion can be used to represent the

solution of the heat PDE [3, 4]:(



=
1

2
4  ≥ 0  ∈ R

(0 ) = ()  : R → R piecewise continuous

in the following sense:

( ) = E (() |0 = )

=
1

(2)2

Z
R

() exp

µ
− | − |2

2

¶


As a corollary, if  is the Dirac impulse at 0, then  simplifies to

( ) =
1

(2)2
exp

µ
− ||

2

2

¶
;

that is, the heat kernel coincides with the Brownian transition density starting at 0.

Also, let denote an open, simply connected domain inR with piecewise smooth,

closed, orientable boundary . The solution of the Laplace PDE (Dirichlet boundary

value problem):½ 4 = 0  ∈ 

() = ()  ∈   :  → R piecewise continuous
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can be written as

() = E (() |0 = )

where  is the lifetime or first exit time of Brownian motion in :

 = inf {  0 : ∈ } 
Consequently, if  = 0 ∪ 1, 0 ∩ 1 = ∅ and () =  for  ∈ , then () is

the probability that a Brownian particle which starts at  ∈  stops at some point

 ∈ 1.

These two examples are special cases of a more general principle that solutions of

any parabolic or elliptic PDE can be represented as expectations of certain stochastic

functionals. (A hyperbolic PDE such as the wave equation 22 = (12)4

apparently cannot be solved in this manner.)

So far we have seen how probability is a servant of analysis. An example of how

analysis serves probability is that the expected lifetime () = E ( |0 = ) satisfies

the Poisson PDE ½ 4 = −2  ∈ 

() = 0  ∈ 

For instance, if is the ball of radius  in R centered at 0, then () = (
2−||2).

In the remainder of this essay, let  = 2. If  is the equilateral triangular region in

R2 with vertices (0 23), (±√3−3), then

 ( ) =
1

2

µ
 −
√
3− 2

3


¶µ
 +
√
3− 2

3


¶µ
 +

1

3


¶


If  is the square region in R2 with vertices (±±), then [5]

( ) =
322

3

∞X
=0

(−1)
(2 + 1)3

∙
1− sech

µ
(2 + 1)

2

¶
cosh

µ
(2 + 1)

2

¶¸
cos

µ
(2 + 1)

2

¶


The lifetime functions ( )  ( ) and ( ) are each maximized when  =

 = 0. Define, for  = 12,

 = (0 0) =
8

3

∞X
=0

(−1)
(2 + 1)3

∙
1− sech

µ
(2 + 1)

2

¶¸
= 01473427065

This constant will be useful in the following; we wonder whether it has a closed-form

expression.

When  = 1
√
,  =

4
√
3 and  = 12, each of ,  and  have area 1 and

(0 0) =
1
2
= 0159  (0 0) =  = 0147   (0 0) =

2
√
3

27
= 0128
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In fact, among all planar regions of fixed area, the disk possesses the longest lifetime

[6]. No such region with shortest lifetime exists, for consider the × (1) finite strip
as →∞.
When  = 1,  = 3 and  = 1, each of ,  and  have inradius 1 (meaning the

radius of the largest inscribed disk is unity) and

(0 0) =
1
2
= 05  (0 0) = 4 = 0589   (0 0) =

2
3
= 0666

Clearly, among all planar regions of fixed inradius, the disk possesses the shortest

lifetime. By way of contrast with the preceding, finding such a region with longest

lifetime is an unsolved problem. Let

 = sup


sup
()∈

E ( |0 = ( )) 

where the outer supremum is over all simply connected domains  in R2 of unit
inradius; thus  ≥ 23. The 2×∞ infinite strip improves this inequality to  ≥ 1
and is the best such convex domain [7, 8]. Bañuelos & Carroll [9, 10] demonstrated

that 1584    3228; they speculated that the associated nonconvex domain  is

extremal for certain other optimization problems as well.

0.1. Fundamental Drum Frequency. The bass tone of a kettledrum, whose

head shape is a simply connected domain  in R2, is the square root of the smallest
eigenvalue  of [11, 12] ½ 4 = −  ∈ 

() = 0  ∈ 

For instance, if  is the disk of radius  centered at (0 0), then the first eigenfunc-

tion/eigenvalue pair is

( ) = 0

Ã
0
p
2 + 2



!
  =

µ
0



¶2
where 0() is the zeroth Bessel function of the first kind and 0 = 24048255576 is

its smallest positive zero. If  is the equilateral triangular region of height  centered

at (0 6), then [13, 14]

 ( ) = sin

µ




µ
 −
√
3− 2

3


¶¶
+sin

µ




µ
 +
√
3− 2

3


¶¶
−sin

µ
2



µ
 +

1

3


¶¶


 =
42

2

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If  is the square region of side 2 centered at (0 0), then

( ) = cos
³
2

´
cos
³
2

´
  =

2

22


When ,  and  each have area 1,

 = 20 = 18168   = 2
2 = 19739   =

42√
3
= 22792

The Faber-Krahn inequality states that, among all planar regions of fixed area, the

disk possesses the lowest bass tone. No such region with highest bass tone exists, for

consider the × (1) finite strip as →∞.
When ,  and  each have inradius 1,

 = 20 = 5783   =
2

2
= 4934   =

42

9
= 4386

Clearly, among all planar regions of fixed inradius, the disk possesses the highest bass

tone. Finding such a region with lowest bass tone is an unsolved problem. Let

Λ = inf




where the infimum is over all simply connected domains  in R2 of unit inradius;
thus Λ ≤ 429. The 2 ×∞ infinite strip improves this inequality to Λ ≤ 24 =

2467 and is the best such convex domain [15, 16, 17]. In the other direction, Makai

[18, 19, 20, 21, 22] proved that Λ ≥ 14. The best bounds currently known [9] are
06197  Λ  21292 and the associated nonconvex domain  is conjectured to be

the same as before.

What does this have to do with Brownian motion? We give just one (of several)

formulas [10, 23]:

Λ = 2 sup

(
 ≥ 0 : sup

()∈
E (

 |0 = ( )) ∞
)

for bounded, simply connected . In words, the fact that  ≥ Λ2  0 for  of

inradius  means that if a drum produces an arbitrarily low bass tone, then it must

contain an arbitrarily large circular subdrum.

0.2. Torsional Rigidity. Let us return to the expected lifetime function ( )

and evaluate not its maximum value in the domain , but rather twice its average

value

 =
2

area()

Z


E ( |0 = ( ))  
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For instance, if  is the disk of radius  centered at (0 0), then  = 22. If  is

the equilateral triangular region of height  centered at (0 6), then  = 215. If

 is the square region of side 2 centered at (0 0), then [5]

 =
42

3

"
1− 192

5

∞X
=0

1

(2 + 1)5
tanh

µ
(2 + 1)

2

¶#
=

1

4
2(22492322392) = 2(05623080598) = 42(01405770149)

Again, we wonder about the possibility of closed-form evaluation.

When  = 1
√
,  =

4
√
3 and  = 12,

 =
1
2
= 0159   = 0140   =

√
3
15
= 0115

This can be expressed in the language of elasticity theory. Pólya [24, 25, 26, 27]

proved Saint Venant’s conjecture that, among all cylindrical beams of prescribed

cross-sectional area, the circular beam has the highest torsional rigidity. No such

beam with lowest torsional rigidity exists, for consider the  × (1) rectangle as
→∞.
When  = 1,  = 3 and  = 1,

 =
1
2
= 05   = 0562   =

3
5
= 06

Among all cylindrical beams of prescribed cross-sectional inradius, the circular beam

has the lowest normalized torsional rigidity (normalized by area, as defined earlier).

Finding such a beam with highest normalized torsional rigidity is an unsolved prob-

lem. Let

 = sup




where the supremum is over all simply connected domains  in R2 of unit inradius;
thus  ≥ 35. The 2×  rectangle improves this inequality, as →∞, to  ≥ 43
and is the best such convex domain [28]. For nonconvex domains, we have the upper

bound 6456 [9], but little else is known about this problem.

0.3. Conformal Mapping. If  is an open, simply connected region in C, define
() to be the inradius of . The univalent Bloch-Landau constant Θ is given

by [29]

Θ = inf


(())

where the infimum is over all one-to-one analytic functions  defined on the open

unit disk  satisfying (0) = 1,  0(0) = 1. Let  denote the conformal mapping of
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 onto the infinite strip −4  Im()  4:

() =
1

2
ln

µ
1 + 

1− 

¶
=

∞X
=0

2+1

2 + 1


hence Θ ≥ 4. Szegö [30, 31] further proved that, if () is convex, then (()) ≤
(()). For the nonconvex scenario, the best bounds currently known [9, 32, 33] are

057088  Θ  065642 and the associated nonconvex region () is conjectured to

be the same as the nonconvex domain for the constants  and Λ.

0.4. Addendum. The constant  indeed has a closed-form expression [34, 35]:

 = 4

43

µ
1

4

1

4

1

2

1

2
;
5

4

5

4
 1; 1

¶


µ
1

4

1

2

¶2 = 01473427065 =
1

2
(02946854131)

where  is the generalized hypergeometric function [36] and  is the Euler beta

function (( ) = (1  ) in [37]). An interesting double series representation:

 =
32

4

∞X
=1

∞X
=1

(−1)+
(2− 1)(2− 1) [(2− 1)2 + (2− 1)2]

follows from a formula in [38] which, in turn, was corrected in [39]. See also [40].

Both  and  can be defined via the calculus of variations [26]. It is more cus-

tomary to take area() as torsional rigidity and this is equal to [41, 42]

1

12
− 16

5

∞X
=0

1

(2 + 1)5
coth

µ
(2 + 1)

2

¶
= 00260896517

for an isosceles right triangle with sides 1, 1,
√
2 and [43, 44]

9

"
17
√
3

192
− 1

5

∞X
=0

1

(2 + 1)5

(
2 tanh

Ã
(2 + 1)

√
3

2

!
− 9 tanh

µ
(2 + 1)

2
√
3

¶
+

(−1)9
√
3 sech

µ
(2 + 1)

2
√
3

¶
+ 27
√
3 sin

µ
(2 + 1)

3

¶¾¸
= 00044516625 =

9

16
(00079140667)

for a 30◦-60◦-90◦ triangle with sides 12,
√
32 and 1. The corresponding value for

a regular hexagon of unit side has attracted considerable attention [45, 46, 47, 48] —

see history in [42] — a complicated formula in [49] gives ≈ 1035459, as reported in
[50], and verifies an unpublished calculation in [51].
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