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We show that the sequence of numerators and the sequence of denominators
of a 2-periodic continued fraction are (essentially) Lehmer sequences. Examples
include A022998 and A026741, A203976 and A005013, A243470 and A243469.

Lehmer sequences

Let R and Q be nonzero integers such that R − 4Q 6= 0 and let α, β be the
distinct roots of the quadratic equation x2−

√
Rx+Q= 0. The Lehmer sequence

(Ln)n≥1 is an integer sequence de�ned by

Ln ≡ Ln(R,Q) =


(αn − βn) / (α− β) for n odd

(αn − βn) /
(
α2 − β2

)
for n even.

(1)

Lehmer sequences were introduced in [1] as a generalization of Lucas sequences
[5]. Lehmer was mainly interested in the arithmetical properties of his sequences
and restricted his attention to the case where both α and β were real, that is, he
supposed both R and R − 4Q were positive integers. For our limited purposes
in this note we don't assume these conditions hold.
The Lehmer sequence Ln(R,Q) begins

[1, 1, R−Q,R− 2Q,R2 − 3RQ+Q2, (R−Q)(R− 3Q), ...] .

The sequence satis�es the pair of second-order linear recurrence equations:
L0 = 0, L1 = 1 and for n ≥ 1

L2n = L2n−1 −QL2n−2

(2)

L2n+1 = RL2n −QL2n−1.

The ordinary generating function for the Lehmer sequence is easily calculated
from (1) as∑

n≥1

Lnx
n =

x(1 + x+Qx2)

1− (R− 2Q)x2 +Q2x4
(3)

=
x+Qx3

1− (R− 2Q)x2 +Q2x4
+

x2

1− (R− 2Q)x2 +Q2x4
. (4)

as a sum of odd and even functions.
The Lehmer sequence Ln(R,Q) may also be found by concatenating the �rst

rows of the 2 x 2 matrices 1
−QM

n, n = 1, 2, ..., where

M =

[
−Q −Q
R R−Q

]
.
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We also note the product formula

Ln(R,Q) =

(n−1)/2∏
k=1

(
R− 4Qcos2

(
kπ

n

))
.

2-periodic continued fractions

Let P1, P2 and Q be nonzero integers and consider the 2-periodic generalized
continued fraction

Q

P1+

Q

P2+

Q

P1+

Q

P2+
. . . . (5)

The sequence of convergents to the continued fraction begins

0

1
,
Q

P1
,

QP2

P1P2 +Q
,
Q(P1P2 +Q)

P1(P1P2 + 2Q)
,

QP2(P1P2 + 2Q)

P 2
1P

2
2 + 3QP1P2 +Q2

,
Q(P 2

1P
2
2 + 3QP1P2 +Q2)

P1(P1P2 +Q)(P1P2 + 3Q)
, · · · .

(6)
Let Dn = Dn(P1, P2, Q) (resp. Nn = Nn(P1, P2, Q) ) denote the denominator
(resp. the numerator) of the nth convergent of the continued fraction (5). It
can be shown inductively that the denominators satisfy the recurrence

Dn+1(P1, P2, Q) = P1Dn(P2, P1, Q) +QDn−1(P1, P2, Q).

By considering the (n+ 1)th convergent of (5) we see that

Nn+1(P1, P2, Q)

Dn+1(P1, P2, Q)
=

Q

P1 +
Nn(P2,P1,Q)
Dn(P2,P1,Q)

,

from which, by another induction argument, we �nd

Nn+1(P1, P2, Q) = QDn(P2, P1, Q). (7)

We will show that the sequence of denominators (Dn)n≥1 is essentially a
Lehmer sequence. It will follow from this that the denominator sequence (Dn)n≥1

is a linear divisibility sequence of the fourth order; furthermore, if both P1 and
P2 are relatively prime to Q then we will show that the sequence (Dn)n≥1 is
a strong divisibility sequence, that is, gcd(Dn, Dm) = Dgcd(n,m) for all natural
numbers n and m. It will then follow from (7) that the same divisibility results
also hold for the sequence of numerators (Nn+1)n≥1.

Recurrence equations and generating function for (Dn)

From the general theory of continued fractions the denominator sequence (Dn)
satis�es the pair of second-order linear recurrence equationsD0 = 0, D1 = 1 and,
for n ≥ 1,

D2n = P1D2n−1 +QD2n−2

(8)

D2n+1 = P2D2n +QD2n−1.
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We can use these recurrence equations to extend the sequence Dn to negative
su�ces. The result is

D−n = (−1)n−1Dn

Qn
. (9)

The pair of recurrences (8) may be combined into the single fourth-order linear
recurrence equation

Dn = (P1P2 + 2Q)Dn−2 −Q2Dn−4, n ≥ 4. (10)

Using (10), we can easily show the generating function for the sequence of
denominators is∑

n≥1

Dnx
n =

x(1 + P1x−Qx2)
1− (P1P2 + 2Q)x2 +Q2x4

(11)

=
x−Qx3

1− (P1P2 + 2Q)x2 +Q2x4
+

P1x
2

1− (P1P2 + 2Q)x2 +Q2x4
.(12)

as a sum of odd and even functions. Comparing (12) with (4), we see that the
sequence of denominators (Dn) of the convergents to the continued fraction (5)
is essentially the Lehmer sequence Ln(P1P2,−Q) with integer parameters P1P2

and −Q, except that the even-indexed denominators D2n have an extra factor
of P1:

Dn(P1, P2, Q) =


Ln(P1P2,−Q) for n odd

P1Ln(P1P2,−Q) for n even.

(13)

By (7), there is a corresponding result for the sequence of numerators:

Nn+1(P1, P2, Q) =


QLn(P1P2,−Q) for n odd

QP2Ln(P1P2,−Q) for n even.

(14)

In particular, if P1 = 1 we have

Dn(1, P2, Q) = Ln(P2,−Q),

while if P2 = 1 we have

Nn+1(P1, 1, Q) = QLn(P1,−Q).

Divisibility properties of Dn

In [1] Lehmer states two theorems concerning the divisibility properties of
Lehmer sequences. We sketch the proofs in the Appendix.

Theorem 1. The Lehmer sequence Ln = Ln(R,Q) is a divisibility sequence,
that is, Ln divides Lm whenever n divides m (provided Ln 6= 0).�
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Corollary 1. Let P1, P2 and Q be nonzero integers. The sequence of denomi-
nators (Dn(P1, P2,Q))n≥1 and the sequence of numerators(Nn+1(P1, P2,Q))n≥1

of the convergents of the periodic continued fraction

Q

P1+

Q

P2+

Q

P1+

Q

P2+
...

are divisibility sequences.

Proof. Immediate from Theorem 1 applied to (13) and (14).�

Theorem 2. If R and Q are relatively prime integers then the Lehmer sequence
Ln = Ln(R,Q) is a strong divisibility sequence; that is, for all positive integers
n,m we have

gcd(Ln, Lm) = Lgcd(n,m).�

Corollary 2. Let P1, P2 and Q be nonzero integers. Suppose further that
both P1 and P2 are relatively prime to Q. Then the sequence of denomina-
tors (Dn(P1, P2,Q))n≥1 and the sequence of numerators (Nn+1(P1, P2,Q))n≥1

of the convergents of the periodic continued fraction

Q

P1+

Q

P2+

Q

P1+

Q

P2+
...

are strong divisibility sequences.

Proof.

We prove the result for the sequence of denominators; the proof for the se-
quence of numerators will then follow from (7). The proof is on a case-by-case
basis depending on the parity of n and m. For example, let us show that
gcd(Dn, Dm) = Dgcd(n,m) in the case when n is odd and m is even; the remain-
ing cases are dealt with in a similar manner and are left for the reader.
First we prove the following property of the Lehmer sequence Ln = Ln(P1P2, Q):
P1 is coprime to Ln when n odd, that is to say,

gcd(L2n−1, P1) = 1 for all positive integers n. (15)

The proof is by induction on n. We make the inductive hypothesis

gcd(L2n−1, P1) = 1 for some n.

This is clearly true when n = 1 since L1 = 1. Using the recurrence equation for
Lehmer sequences (2) we �nd

gcd(L2n+1, P1) = gcd(P1P2L2n −QL2n−1, P1)

= gcd(−QL2n−1, P1)

= gcd(L2n−1, P1) since by assumption P1is relatively prime to Q

= 1
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and the induction goes through.
Now by assumption, n is odd and m is even, and so we have from (13)

gcd(Dn, Dm) = gcd(Ln, P1Lm)

= gcd(Ln, Lm) using (15)

= Lgcd(n,m) by Theorem 2

= Dgcd(n,m)

using (13) again, since gcd(n,m) is odd.�

Appendix

In this section we sketch proofs of Lehmer's Theorem 1 and Theorem 2. We
follow the treatment of the corresponding results for Lucas sequences given by
Nor�eet [2, Theorem 3]. It will be convenient to de�ne the Lehmer sequence Ln

by means of the recurrence equations (2), which we write in a condensed form
as

Ln = fnLn−1 −QLn−2, [L0 = 0, L1 = 1], (16)

where we de�ne fj = 1 if j is even and fj = R if j is odd.

Theorem 1. The Lehmer sequence Ln = Ln(R,Q), with integer parameters R
and Q, is a divisibility sequence.

Sketch proof. It is not di�cult to establish inductively the following general-
ization of the de�ning recurrences (16):

for n ≥ 1 and k ≥ 1 there holds

Ln+k =


fkLk+1Ln −QLkLn−1 for n even

Lk+1Ln − fk+1QLkLn−1 for n odd.

(17)

Assuming this and choosing k to be a multiple of n in (17), say k = mn, gives
an expression for L(m+1)n as a linear combination of Ln and Lmn. Therefore, if
Ln divides Lmn then Ln divides L(m+1)n. It follows by an induction argument
that Ln is a divisibility sequence.�

Theorem 2. If R and Q are relatively prime integers then the Lehmer sequence
Ln = Ln(R,Q) is a strong divisibility sequence; that is, for all positive integers
n,m we have

gcd(Ln, Lm) = Lgcd(n,m) .

Sketch proof. Firstl, one uses induction arguments to prove that for n ≥ 1

5



gcd(Ln, Q) = 1 (18)

and
gcd(Ln+1, Ln) = 1. (19)

We need to prove the strong divisibility property

gcd(Ln, Lm) = Lgcd(n,m) (20)

holds for all natural numbers n,m. We can assume without loss of generality
that n ≥ m. Let k = n−m. We begin by establishing the result

gcd(Ln, Lm) = gcd(Ln−m, Lm). (21)

Suppose �rst that m is even. Then

gcd(Ln, Lm) = gcd(Lm+k, Lm)

= gcd(fkLk+1Lm −QLkLm−1, Lm) by (17)

= gcd(QLkLm−1, Lm)

= gcd(LkLm−1, Lm) using (18)

= gcd(Lk, Lm) using (19)

= gcd(L(n−m), Lm).

The proof of (21) when m is odd is exactly similar.
We are now ready to prove the strong divisibility property (20) by means of

a strong induction argument on n +m. Clearly, (20) is true for the base case
n = m = 1 . We make the inductive hypothesis that (20) is true for all n,m
with n+m ≤ N . Then if n+m = N + 1

gcd(Ln, Lm) = gcd(Ln−m, Lm) by (21)

= Lgcd(n − m,m) by the inductive hypothesis

= Lgcd(n,m)

and hence the induction goes through.�

If we examine the above proofs of Theorem 1 and Theorem 2 we see that
they only use the fact that the ring of integers Z is an integral domain with a
greatest common divisor function. Thus these two theorems may be generalized
to Lehmer sequences de�ned by the recurrence equations (2) where now R and
Q are taken to be elements of an arbitrary GCD domain [3]. For example,
the sequence of bivariate polynomials Pn(x, y) de�ned by the linear recurrence
equations P0 = 0, P1 = 1 and for n ≥ 1

P2n = P2n−1 − xyP2n−2

(22)

P2n+1 = (x+ y)2P2n − xyP2n−1
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will be a strong divisibility sequence in the polynomial ring Z[x, y]. An explicit
formula is

Pn(x, y) =


(xn − yn) / (x− y) for n odd

(xn − yn) /
(
x2 − y2

)
for n even.

(23)
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