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Abstract

We exhibit a table of 118 positive definite quadratic forms which,
arranged in pairs and triples, represent the same odd primes. Evidence
is presented that, after discarding certain trivial pairs, this list may
be complete.

1 Introduction

This investigation began with the observation that z2 + 9y? and 22"+ 12y
represent the same primes: those of the form 12n + 1. This led us to wonder
what other such pairs of forms exist.

We have made a partial search and the result appears in Table II at the
end of this note. This was achieved by dismissing certain trivial examples
and making certain assumptions, as described below.

It is convenient to change our problem slightly by studying forins that
represent the same odd primes.

As background we mention a repeatedly rediscovered theorem of Schering:
the only forms representing the same numbers are 22 + zy + y? and z? + 332
(up to scaling).

We shorten az? + bzy + cy® to a,b,c. We call the form odd (even) if b is
odd (even). The discriminant is b — 4ac.

2 Trivial pairs

Let f be odd with discriminant congruent to 1 (mod 8). It is known that
there 1s a certain even ¢, with discriminant 4 times that of f, that “sits



above™ f, and that f and g represent the same odd numbers (a fortiori, the
same odd primes). Let us throw in Schering’s pair in addition. Next take a
even and b odd, with a < b. Then a, a, b and 4a, 2a, b represent the same odd
numbers and the same is true for b, a,b and b, 2a, 4b. It would be redundant
in our deliberations to include both versions of any of these pairs. We shall
discard the top version and keep the lower one.

3 Isoprime forms

It will be convenient to have a name for the crucial property we are studying.
Definition. The forms f and g will be called isoprime if they satisfy the
following conditions:
(a) f# g9,
(b) Each is Gauss-reduced with middle coefficient > 0,
(c) Neither is the top version of a trivial pair,
(d) They represent exactly the same odd primes.
We call f isoprime if it is a member of an isoprime pair. “Isoprime triple”
is self-explanatory. So far, no isoprime quadruple has surfaced.

4 Bi-idoneal forms

Borrowing Euler’s term we call a form idoneal if it is alone in its genus.
We call f bi-idoneal if it is either idoneal or its genus consists of f and its
opposite. There exists a list of bi-idoneal forms which seems to be complete,
but there is as yet no proof of completeness.

The thinking that underlies the restriction to bi-idoneal forms is as fol-
lows. In all other cases the forms in a genus split up the relevant primes
in a way that is subtle. This (perhaps) makes it unlikely that the primes
represented could exactly match the primes represented by some other form.

Here is a fact that simplifies the search (the proof is easy): if two bi-
idoneal forms are to represent the same odd primes then the odd primes
dividing their discriminants must be the same, ignoring multiplicities.

The search examined all known bi-idoneal forms and identified the iso-
prime ones. This was done partly by hand, a notorious source of error. To
diminish the chance of error the search was done twice, using diffcrent meth-
ods.



The outcome appears in Table II. There are 56 entries of which 6 (marked
by asterisks) are triples. The total number of forms is thus 118.

Table II is sorted out according to the primes dividing the discriminant.
Thus in items 2-6 the only odd prime dividing the discriminant is 3. This
continues, winding up with 3,5,7 and 13 for the final four items.

5 A general search

To get additional evidence for the completeness of the list in Table II, a
search was made that was not restricted to bi-idoneal forms. The method
selected was as follows. Fix two odd primes p,q with p < q. We collect the
forms for which p and ¢ are the first two odd primes represented. There are
only a finite number: an upper bound is (p + 1)g. These were examined and
all isoprime pairs were extracted. A program was written to do all of this
mechanically and was executed for g < 2237. The list in Table II reappeared
and there were no others.

It turns out that, with one exception, the second odd prime for all the
known bi-idoneal forms is less than 1500. The exception is 1,0, 1848 (1848
is the largest known idoneal number). This was treated individually. The
conclusion: if a known bi-idoneal form is isoprime, it appears in Table II.

The investigation of 1,0, 1848 turned up something worth mentioning: it
and the form 9,6, 1849 represent the same first 43 odd primes before dis-
agreeing on the a4th

6 Near misses

In the bi-idoneal search 10 “near misses” were observed and collected. They
are displayed in Table 1. We shall explain what a near miss is by citing the
second item on the list: 3,0,8 and 8,8,11. The first form of course represents
3. Delete this. Then the remaining primes represented by 3,0,8 coincide
exactly with the primes represented by 8 8,11.

We have nothing to say about the possible completeness of Table I.



Table 1. 10 near misses

L. 1,11 1,1,7
2. 3,0,8 8,8,11

3. 3,0,16 AL 19
4. 1,05 1,0,25

5. 5,0,8 13,8,32

6. 2,2,23 3,0,20

7. 5,0,9 9,6,26

8. 5,0,24 21,6,29

9. 3,0,80 27,24,32

10. 3,0,56 20,12,27

7 A salute to Bertrand

Here is a narrowly circumscribed problem. Let ¢ be a positive integer. For
what values of ¢ is it the case that 1,0,¢ and 1,0, 2t represent the same
primes? This is true for t = 8, 24, and 120. Are there any others?

One way of attacking this is a variation on Bertrand’s theme. Bertrand
“postulated” that (for ¢ > 1) there is always a prime between ¢ and 2¢, and
this soon became a theorem. Let us demand more: that 1,0,¢ represents a
prime between ¢ and 2t. Now there are exceptions. A program was written
to check this out. Up to 156,123,456 there are 104 exceptions, the last being
41,383. The 37 prime exceptions: 3, 5, 11, 17, 23, 29, 41, 59, 83, 89, 107, 179,
251, 263, 269, 293, 389, 401, 461, 479, 491, 569, 593, 881, 929, 1319, 1619,
1931, 2531, 2789, 3461, 3701, 4919, 5309, 7589, 9749, 26171, are irrelevant
for the application. There remain the 67 composite exceptions: 8, 24, 26, 35,
86, 68, 119, 120, 125, 134, 185, 194, 206, 290, 314, 326, 341, 356, 371, 404,
464, 489, 524, 545, 626, 635, 671, 698, 699, 749, 755, 815, 914, 978, 1011,
1141, 1161, 1190, 1205, 1232, 1316, 1529, 1595, 1634, 1760, 1784, 2021, 2546,
3419, 3464, 3485, 3561, 3674, 3746, 3806, 4094, 4616, 4904, 6041, 7061, 7556,
8876, 9974, 12326, 17531, 17786, 43181. After a little attention to these we
conclude that up to ¢ = 156,123,456 the only cases where 1,0,¢ and 1,0, 2t
represent the same primes are ¢t = 8, 24, and 120.

A related computation was carried out. Suppose given 1,0,t¢ and 1,0, u,
with ¢ < u < 100000. When do they represent the same odd primes? They
do for the pairs that appear in Table Il and also for ¢ = 1, © = 4, but not
otherwise. Furthermore the first four primes suffice to do the job except for



t = 86970, u = 87810, for which the fifth prime represented is needed.

Table 11.

118 isoprime forms
Triples are marked by an asterisk

N o Ut Y

8.*

10.*
11.
12.
13.
14.
15.
16.

17.%
18.
19.
20.
21.
22.
23.
24.
29.
26.
27.
28.
20.
30.

1,0,8
1,0,24
1,0,9
4,4,7
5,2,5
8,0,9
7,6,7
74,52
11,2,11
8,0,15
1,1,4
1,0,45
1,0,120
44,31
8,8,17
12,12,13
8,8,23
2,2,11
11,8,32
12,12,17
13,2,13
5,4,68
8,0,21
7,4,76
13,2,61
15,12,20
19,4,28
8,0,39
8,8,41
20,4,23

Table II is continued on next page

1,0,16
1,0,48
1,0,12
7,2,7
5,2,29
9,6,17
7,4,12
7.6,87
11,8,56
12,12,23
1,1,19
1,0,60
1,0,240
15,0,16
17,14,17
13,4,28
15,6,23
11,2,23
11,4,92
17,4,20
13,8,40
5,2,101
29,12,36
76,39
13,6,21
93,12,36
19,10,43
15,12,44
20,12,33
23,20,44

1,0,72

7,2.103
11,10,35
23,8,32

23,4,44
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s, 26
130,218



Table 11 continued

31.* 15,0.56
32. 11,811
33. 6,6,19
34. 31,10,55
35. 8,0,105
36. 12,12,73
37. 19,14,91
38. 98,28,37
39. 21,0,40
40. 20,20,47
41. 8,8,167
42, 24,0,55
43. 41,3841
44. 33,0,40
45, 21,12,76
46. 23,4,68
47. 28,12,57
48, | 35,30,51
49. 28,20,85
50. 51,48,56
51. 57,6,97
52. 71,70,95
53. 55,10,199
54. 57,18,193
55. 76,20,145
56. 88,32,127

36,12,71
11,10,50
19,16,31
31,22,31
32,24,57
33,12,52
19,16,136
37,24,72
45,30,61
47,4263
32,24 87
39,36,76
41,10,65
52,36,57
45,30,109
23,18,207
72,48,73
36,12,131
45,30,157
59,4,116
33,24,88
39,6,71
159,120,160
148,132,177
96,72,241
127,4,172
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