
Computation of A244493:
The number of oriented (0, 1, 2)-factors of the Johnson graph J(n, 2)

Ronald Niles
BSE, Cooper Union School of Engineering, MA, Courant Institute of Mathematical Sciences
rniles@yahoo.com
June 25, 2017

Version 0.147

© 2017 Ronald S. Niles All rights reserved.

ABSTRACT

East and Gray [1] have discussed the sequence A244493 [2] and show that it is also the number of
minimal idempotent generating sets of the singular part of the Brauer monoid. Although none of the
authors was aware of a closed-end formula or recursion for this sequence (dn), they were able to present
software-calculated values for dn through n=6 [1 p.105]. This paper discusses and implements a
technique for calculating two additional members of the sequence using an ordinary PC.

To calculate d7 and d8, a technique is presented which includes multiple applications of the inclusion-
exclusion principle, transformation of the resulting summations into summations over mappings for
which ∣m−1(y)∣>1 for all y in the image, use of symmetry and orbits to reduce the number of
mappings to be evaluated, and efficient implementation for solution by computer. This technique
enables the calculation of A244493 on an ordinary laptop PC, nearly instantly for n<7, in about 6
minutes for n=7, and in 24 days for n=8.

The known values of the sequence A244493 are now:

d2 = 1, d3 = 6, d4 = 265, d5 = 126140, d6 = 855966441,

d7 = 102526835994056, d8 = 258081861682902430193

DEDICATION

To the brilliant Professor Manolis Kondopirakis (1948-2016).

TABLE OF CONTENTS
ABSTRACT...1
DEDICATION...1
INTRODUCTION...2
BIJECTION WITH CERTAIN PERMUTATIONS OF VERTICES OF J(n,2)...3
INCLUSION-EXCLUSION IN GENERAL...3
INCLUSION-EXCLUSION APPLIED TO A244493...4
TABLE OF BASE SET MAPPINGS FOR n=5..8
INCLUSION-EXCLUSION APPLIED TO THE COEFFICIENTS Ck..8
DECOMPOSING FULLY-MULTIPLE MAPPINGS INTO UNIONS OF BASE SETS........................11
SAMPLE CALCULATIONS...16
USE OF SYMMETRY AND ORBITS TO REDUCE COMPUTATIONS...18
COMPUTER ALGORITHMS TO EVALUATE IMAGE CONFIGURATIONS....................................21
ADDITIONAL OPTIMIZATIONS TO COMPUTE N=8...25
VERIFYING THE RESULTS USING A COMPLEMENTARY PROBLEM...26
REFERENCES...32

INTRODUCTION

There are several ways to describe the sequence A244493. As East and Gray have shown, it is the
number of minimal idempotent generating sets of the singular part of the Brauer monoid Bn. They were
able to prove a one-to-one correspondence between such sets and the number of oriented (0,1,2)-factors
of the Johnson graph J(n,2) [1, p.104]. Additionally, there is a one-to-one correspondence between such
oriented (0-1-2)-factors of the graph J(n,2) and the set of permutations of vertices of J(n,2) which map
each vertex either to itself or to a neighboring vertex. It is these permutations which will be counted in
this paper to determine members of the sequence.

The sequence grows rapidly, due in part to the rapid growth of J(n,2). Let X be the set of all two-
element subsets of {1,...,n}. There are, of course, (n

2) elements in X. The graph J(n,2) has its vertices in

one-to-one correspondence with elements of X, and is a regular graph which connects vertices if and
only if their corresponding subsets are not disjoint. It is easy to see that there are (n

2) vertices and

(n
2)(n−2)edges in J(n,2).

In order to evaluate dn, an initial application of inclusion-exclusion is performed, beginning with the set
of all permutations on the elements of X, and subsequently excluding those permutations which map at
least one element of X to an element with which it is disjoint. This results in an finite alternating series
of the form:

∑
k=0

∣X∣

(−1)k C k (∣X∣−k)!

where C0 is 1, and for k>0, Ck is the number of partial permutations p whose domain and image are k-
element subsets of X, and for which p(x) is disjoint from x for all x in its domain.

The values of Ck are then evaluated by an additional application of inclusion-exclusion, this time
starting with the set of all mappings m whose domain is a k-element subset of X and whose image is a
subset of X, and for which m(x) is disjoint from x for all x in the domain of m. The set of partial
permutations being sought can be obtained by excluding those mappings which are not partial
permutations. These mappings are partial permutations unless they have at least one element y in the
image for which the number of domain elements mapped to y is larger than 1, i.e. ∣m−1(y)∣>1. The
value ∣m−1(y)∣ will be referred to as the multiplicity of y, abbreviated mult(y), and mappings for which
all elements in the image have multiplicity greater than one will be referred to as fully-multiple
mappings. When inclusion-exclusion is applied, the results can be transformed into a sum over fully-
multiple mappings. The problem of finding dn is thus transformed into one in which the major task is to
count all fully-multiple mappings m where the domain and image are subsets of X, and where m(x) is
disjoint from x for all x in the domain.

The various fully-multiple mappings are counted by first classifying the image of the mapping, i.e.
specifying which elements of X are to be in the image, and the multiplicity for each element. Such a
classification of a mapping (image and multiplicity) will be referred to as an image configuration.

Further applications of inclusion-exclusion were considered, for example assigning domain elements
freely to each image configuration, and then excluding associations which were one-to-many and
therefore not mappings. However, this did not adequately simplify the problem, which was already
well-suited for computer evaluation.

The graph J(n,2) is symmetric with respect to permutations of {1,...,n}, and this symmetry can be used
to reduce the number of image configurations which need to be evaluated. Because of this symmetry,
for any given image configuration, if the values {1,...,n} are permuted in the image, the new image has

the same number of possible mappings as the old, because the mappings being counted require m(x) to
be disjoint from x and that relationship is invariant under permutation of {1,...,n}. If this permutation
group acts on the set of all possible images, the resulting set of orbits can be evaluated by computing
the number of mappings possible for a representative of each orbit and then multiplying the result by
the orbit size. This will greatly reduce the number of mappings to be evaluated. The enumeration of
these orbits is well-suited for computer evaluation.

At this point, a computer is programmed to determine all possible image configurations and a
representative from each orbit. For each representative image configuration, the computer counts all
possible assignments of domain elements to the specified image configuration. Various optimizations
were made during the implementation process and these will be described. The results of the
computations will be given, along with a consistency check of the computed results.

BIJECTION WITH CERTAIN PERMUTATIONS OF VERTICES OF J(n,2)

An oriented (0,1,2)-factor of J(n,2) is a subgraph consisting of all of the vertices of J(n,2) and some of
the edges. These vertices are partitioned into three categories: one or more isolated vertices (the 0-
factor), one or more pairs of vertices joined only to each other (the 1-factor) and one or more directed
cycles of vertices (the oriented 2-factor). An oriented (0,1,2)-factor may be put into one-to-one
correspondence with permutations p of vertices of J(n,2) for which p(x) is a neighbor of x as follows.
The vertices in the 0-factor are fixed points of the permutation, the pairs of vertices in the 1-factor are
2-cycles of the permutation, and the directed cycles in the oriented 2-factor are 3- and higher- cycles of
the permutation. The 3- and higher cycles of permutations can be reversed in direction resulting in a
different permutation, thus it is necessary to specify oriented (0-1-2)-factors.

Let X be the set of all two-element subsets of {1,...,n}. The permutations in one-to-one correspondence
with the various oriented (0,1,2)-factors of J(n,2) are those permutations of X for which p(x) is not
disjoint from x for any x in X. These are the permutations which will be counted to determine dn.

INCLUSION-EXCLUSION IN GENERAL

Inclusion-exclusion [3] is a principle from set theory which states that for sets A and B with finite
cardinality:

∣A∪B∣=∣A∣+∣B∣−∣A∩B∣

It is called inclusion-exclusion because the sizes of both sets are included, then an adjustment is made
for the overlap in the sets by excluding the intersection. Inclusion-exclusion can be extended to as
many sets as desired, e.g. three sets:

∣A∪B∪C∣= (∣A∣+∣B∣+∣C∣)−(∣A∩B∣+∣A∩C∣+∣B∩C∣)+∣A∩B∩C∣

or four sets:

∣A∪B∪C∪D∣=
+(∣A∣+∣B∣+∣C∣+∣D∣)
−(∣A∩B∣+∣A∩C∣+∣A∩D∣+∣B∩C∣+∣B∩D∣+∣C∩D∣)
+(∣A∩B∩C∣+∣A∩B∩D∣+∣A∩C∩D∣+∣B∩C∩D∣)
−∣A∩B∩C∩D∣

In words, the size of the union is equal to the sum of the sizes of all sets in the union, minus the sum of
the sizes of all pairwise intersections of such sets, plus the sum of the sizes of all 3-wise intersections of
such sets, minus the sum of the sizes of all 4-wise intersections, and so on. The number of terms gets
large quickly but generalizations are often possible, based on large classes of intersections being empty,
or large classes of intersections having the same size. Inclusion-exclusion is good for “at least one”

type of problems, where the sets A,B,C... represent different ways that “at least one” can be achieved.
Additionally, inclusion-exclusion can be used to solve “no” or “none” type of problems by subtracting
a union of “at least one” sets from the set of all.

Finding the number of derangements is a well-known application of inclusion-exclusion [3].
Derangements are permutations of n objects that have no fixed points. For the sake of example, let n=6,
and let P6 be the set of all permutations on {1..6}, and let D6 be the number of derangements in P6 . The
number of derangements can be calculated by subtracting the non-derangements, i.e. the number of
permutations where at least one element maps to itself. Let A1 be the subset of P6 for which 1 is fixed.
Let A2 be the subset of P6 for which 2 is fixed, and so on. The number of derangements is then
∣D6∣ = ∣P6∣−∣A1∪A2∪A3∪A4∪A5∪A6∣ , and by inclusion-exclusion:

∣D6∣=∣P6∣−∣A1∪A2∪A3∪A4∪A5∪A6∣=

6 !
−∑

i⩽6

∣Ai∣

+∑
i< j⩽6

∣Ai∩Aj∣

− ∑
i< j<k⩽6

∣Ai∩Aj∩Ak∣

+ ∑
i< j<k<l≤6

∣Ai∩Aj∩Ak∩Al∣

− ∑
i< j<k<l<m≤6

∣Ai∩Aj∩Ak∩Al∩Am∣

+ ∑
i< j<k<l<m<n≤6

∣Ai∩Aj∩Ak∩Al∩Am∩An∣

To evaluate the sums, note that ∣Ai∣ are all 5! because they have one constrained point, ∣Ai∩Aj∣ are
all 4! because they have two constrained points, ∣Ai∩Aj∩Ak∣ are all 3! because they have three
constrained points, and so on. Now note that the number of such sets is

 (61) Ai , (62) Ai∩Aj , (63) Ai∩Aj∩Ak , (6
4) Ai∩Aj∩Ak∩Al , (65) Ai∩Aj∩Ak∩Al∩Am and

(66) Ai∩Aj∩Ak∩Al∩Am∩An . Putting this information together and doing some algebra with the

binomials yields D6 = 6! - 6!/1! + 6!/2! - 6!/3! + 6!/4! - 6!/5! + 6!/6! which evaluates to 720 – 720 +
360 – 120 + 30 - 6 + 1 = 265.

Note that the method used generalizes to Dn=n !∑
i=0

n −1n

i !
and that the summation is the beginning of the

Maclaurin expansion for 1/e. Remarkably, this series converges so quickly that the number of
derangements may be found for all n>0 by rounding n!/e to the nearest integer [4].

INCLUSION-EXCLUSION APPLIED TO A244493

First, a change of notation. For clarity in the following discussion, letters will be used instead of
numbers for the elements of {1,...n}, and also for elements of X. Each number k in {1,...,n} will be
substituted with the k-th capital letter of the alphabet. Moreover, elements of X, which are two-element
subsets of {1...n}, will be denoted in shorthand by simply concatenating the two set elements in
lexicographic order, e.g. {2,4} will be denoted BD (but never DB). Let P be the set of all permutations
of X.

The application of inclusion-exclusion to the set of all permutations of X where p(x) is not disjoint
from x for any x in X somewhat parallels the method in which it is used to calculate derangements in
the previous section. For example, d4 can be determined by considering permutations of X={AB,

AC,AD,BC,BD,CD} for which p(x) is not disjoint from x for any x in X. The number of such
permutations is determined by excluding from the set of all permutations those which have at least one
p(x) disjoint from x. That set can be described as the union:

 ∣{P ∣ AB→CD }∪{P ∣ AC → BD }∪{P ∣ AD→ BC }∪{P ∣BC → AD }∪{P ∣BD → AC }∪{P ∣CD→ AB }∣

Note that any intersection of these sets can be described by combining restrictions, e.g.

{P ∣ AB →CD}∩{P ∣ AC → BD}={P ∣ AB→CD∧AC →BD} .

Note also that for n=4, the restrictions taken together always describe a partial permutation, since each
element of X appears exactly once in the domain or image of any restriction. This will not be the case
for larger n. Let P1 be the subsets of P which have 1 restriction, P2 the subsets of P which have two
restrictions, and so on up to P6. Then, the logic proceeds similarly as to determining the number of
derangements:

d 4=6 !−∑
x∈P1

∣x∣+∑
x∈P2

∣x∣−∑
x∈P3

∣x∣+∑
x∈P4

∣x∣−∑
x∈P5

∣x∣+∑
x∈P6

∣x∣

In P1, the subsets have size 5! and there are 6 such subsets

In P2, the subsets have size 4! and there are (6
2) such subsets

In P3, the subsets have size 3! and there are (63) such subsets

In P4, the subsets have size 2! and there are (6
4) such subsets

In P5, the subsets have size 1! and there are (65) such subsets

In P6, the subsets have size 0! and there are (66) such subsets

d 4 = 6! − 6×5 ! + 15×4 ! − 20×3 ! + 15×2 ! − 6×1 ! + 1×0 !

d 4 = 720 − 720 + 360 − 120 + 30 − 6 + 1 = 265

The result and the reasoning are identical to those used in calculating the number of derangements on
permutations of six objects described in the previous section, because both problems require a subset of
the permutations of six items, each of which item has a single and unique prohibited element in the

domain. For n>4, each element has (n−2
2) prohibited elements, e.g. for n=5, there are 3 destinations

prohibited for each of the 10 elements of X, and the 10 x 3 base set for inclusion-exclusion becomes:

{P ∣AB→CD}, {P ∣AB→CE }, {P ∣AB→DE }, {P ∣AC→BD }, {P ∣AC→BE },{P ∣AC→DE}

{P ∣AD→BC }, {P ∣AD→BE },{P ∣AD→CE }, {P ∣AE→BC }, {P ∣AE→BD},{P ∣AE→CD }

{P ∣BC→AD }, {P ∣BC →AE },{P ∣BC→DE }, {P ∣BD→AC }, {P ∣BD→AE},{P ∣BD→CE }

{P ∣BE→AC }, {P ∣BE→AD },{P ∣BE→CD}, {P ∣CD→AB}, {P ∣CD→AE },{P ∣CD→BE }

{P ∣CE→AB}, {P ∣CE→AD },{P ∣CE→BD }, {P ∣DE→AB}, {P ∣DE→AC },{P ∣DE→BC }

P1, the set of permutation sets with a single restriction is the set of base sets just above. Since each base
set has a single restriction, there are (10-1) free elements so each base set has size 9! Taking pairwise

intersections of these sets to form P2, notice that there are some sets in P2 where the combined
restrictions describe a partial permutation, e.g. {P ∣ AB →CD∧AC →CE } , all of which have size 8!,
and other pairwise intersections which are empty sets, such as {P ∣ AB →CD∧AB→CE} , since no
permutation can map AB to two different elements, or {P ∣ AB →CD∧AE →CD} , since no
permutation can map two different elements to the same element. Similar logic applies for P3, P4,
…,P10. By definition, it follows that the intersections of any number of elements in the base set are
non-empty if and only if the combined restrictions of the intersecting sets all have unique domain
elements and unique image elements, i.e. they must form a partial permutation. Let us introduce some
concepts and definitions to formalize the argument.

• Let the size of a mapping be defined as the size of its domain, i.e. ∣m∣ = ∣dom(m)∣.

• Let the concept of a map extension be defined as follows. If m' and m are mappings, then m' is
an extension of m if the domain of m is a subset of the domain of m' and m'(x) = m(x) for any x
in the domain of m. For the purposes of this definition, a map is considered to be an extension
of itself.

• Let the concept of a map union be defined as follows. If m1 and m2 are maps with domains d1
and d2 respectively, and m1(x) = m2(x) for all x in the intersection of d1 and d2, then the union
m of m1 and m2 is the mapping defined on the union of d1 and d2 such that m(x) = m1(x) if x
is in d1, m(x) = m2(x) otherwise.

Let x and y be elements of X, and let mxy be the mapping of size 1 which maps x to y. For any mapping
m whose domain and image are subsets of X, Let E(m) be the set of all elements of P which are
extensions of m.

Let the base set B={E (mxy)∣x , y∈X ∧ x∩ y=∅} In general, there will be ∣X∣=(n
2) ways to choose x

coupled with (n−2
2) ways to choose y which is disjoint from x, thus (n

2)×(n−2
2) elements in the base

set.

Lemma 1: The union of all elements in the base set B is precisely the set of permutations of X which
map at least one element to an element with which it is disjoint.

Proof: If p is in the union of base sets, it must be in at least one of those base sets, and each base set
consists of permutations which are extensions of a mapping which maps an element to a disjoint
element. Conversely, if p is a permutation for which p(x)=y and x is disjoint from y, then p is an
extension of the mapping mxy, therefore p∈{E (mxy)} and {E (m xy)} is a member of the base set B since
B consists of all such sets where x and y are disjoint. It follows that p is in the union of all base sets if
and only if p maps at least one element to an element with which it is disjoint.

Lemma 2: d n=∣X∣! − ∣ ∪
x , y∈X , x∩ y=∅

E (m xy)∣
Proof: dn is the number of permutations of X for which p(x) is not disjoint from x for any x in X. The
total number of permutations is ∣X∣!, so by subtracting those permutations for which there is at least
one value of x for which p(x) is disjoint from x, it follows from Lemma 1 that:

 d n=∣X∣!−∣∪b∈B
b∣=∣X∣!−∣ ∪

x , y∈X , x∩ y=∅
E (mxy)∣

Lemma 3: Let m1 and m2 be mappings whose domains and images are subsets of X.

E (m1)∩E (m2)={E (m1∪m2) , if m1∪m2 is defined
∅ , otherwise

Proof: if p is in the intersection of E(m1) and E(m2), then p(x) = m1(x) for all x in the domain of m1
and p(x)=m2(x) for all x in the domain of m2. If m1(x) is unequal to m2(x) for any x in the intersection
of their domains, then the intersection is null since no permutation can map the value x to two different
values. Alternately, if m1(x) is equal to m2(x) for all x in the intersection of their domains, then the
union is defined, and p(x)=(m1∪m2)(x) for all x in the domain of the union, so p(x) is an extension
of the union.

Lemma 4: if m is a mapping of size k whose domain and image are subsets of X, then

∣E (m)∣={(∣X∣−k)! , if m is a partial permutation
0, otherwise

Proof: If m is not a partial permutation, then m(x) must equal m(y) for some distinct x and y, and this
will be true for any extension of m as well. Since E(m) consists of permutations, it is not possible that a
member of E(m) can map two distinct elements to the same value, so ∣E(m)∣=0 if m is not a partial
permutation. If m is a partial permutation of size k, then there are ∣X∣−k elements of X which are not
in the domain of m, and ∣X∣−k elements of X which are not in the image of m, and these subsets of the
domain and image may be paired in (∣X∣−k)! different ways to produce mappings which when
combined with m produce a distinct, full permutation which is a member of E(m).

Theorem: Let Dk be the set of all partial permutations p(x) whose domain and image are both subsets
of X of size k, and for which p(x) is disjoint from x for all x in the domain of p. Then

d n=∑
k=0

∣X ∣

(−1)k C k (∣X ∣−k)! , where∣X∣=(n
2)and C k={ 1, if k=0

∣D k∣, otherwise

Proof: By lemma 2:

d n = ∣X∣!−∣ ∪
x , y∈X , x∩ y=∅

E (m xy)∣
By inclusion-exclusion on the size of the union,

d n=∣X∣!−∑
k=1

∣X ∣

(−1)(k+1) ∑
I∈k-wise intersections of E (mxy)

∣I∣

Let I'k be the set of k-wise intersections of mxy for which all pairwise unions of such mxy are defined. By
lemma 3, the k-wise intersections which are not in I'k are null and do not contribute to the sum, so the
sum can be taken over I'k :

d n=∣X∣!−∑
k=1

∣X∣

(−1)(k+1) ∑
I ∈ I ' k

∣I∣

By lemma 3, k-wise intersections of extensions of mappings are extensions of k-wise unions of
mappings when defined:

d n=∣X∣!−∑
k=1

∣X∣

(−1)(k+1) ∑
U∈k-wise unions of m xy

∣E (U)∣

By lemma 4, the size of U is zero when the mxy do not combine to form a partial permutation, which
must be a partial permutation of size k, so the second summation can be taken over Dk.

d n=∣X∣!−∑
k=1

∣X∣

(−1)(k+1) ∑
p∈D k

∣E (p)∣

Also by lemma 4, since p is a partial permutation of size k, the size of E(p) will be (∣X∣−k)! which is
the same for all p∈Dk , the summation becomes a product:

d n=∣X∣!−∑
k=1

∣X ∣

(−1)(k+1)∣D k∣(∣X∣−k) !

Which, after some algebra and making the size of X explicit, proves the theorem.

TABLE OF BASE SET MAPPINGS FOR n=5

Table 1: Arrangement of mappings mxy for n=5. There is one row for each element x, consisting of
mappings of x to those elements for which x is disjoint. If one entry is selected from each of any k rows
in the table, the union of those entries form a mapping of size k. This mapping is in general many-to-
one, but may be one-to-one in which case the k entries describe a partial permutation. The coefficients
for Ck for k>0 are the number of partial permutations that can be formed by combining one entry from
each of k rows in the table:

(AB
CD) (AB

CE) (AB
DE)

(AC
BD) (AC

BE) (AC
DE)

(AD
BC) (AD

BE) (AD
CE)

(AE
BC) (AE

BD) (AE
CD)

(BC
AD) (BC

AE) (BC
DE)

(BD
AC) (BD

AE) (BD
CE)

(BE
AC) (BE

AD) (BE
CD)

(CD
AB) (CD

AE) (CD
BE)

(CE
AB) (CE

AD) (CE
BD)

(DE
AB) (DE

AC) (DE
BC)

Higher n have a similar table with (n
2) rows and (n−2

2) columns.

INCLUSION-EXCLUSION APPLIED TO THE COEFFICIENTS Ck

The Ck as described above require the number of partial permutations p of size k for which p(x) is

disjoint from x. Let us use inclusion-exclusion again to exclude from the set of all such mappings of
size k, those which are not partial permutations.

Let Mk be the set of all mappings of size k, for which m(x) is disjoint from x for all x in the domain of
m. Note that the size of Mk is easy to compute, since any choice of k items from X can each be freely
paired with any of the items in X which are disjoint with it, therefore:

∣M k∣ = ((n
2)
k)×(n−2

2)
k

.

Consequently, since mappings of size k=1 are all partial permutations, C1=∣M 1∣=(n
2)×(n−2

2) .

For k larger than 1, not all mappings in Mk are partial permutations, so let us formulate a union of sets
which are not partial permutations, and subtract the size of this union from∣M k∣.

A member of Mk is a partial permutation if and only if the multiplicity ∣m−1(y)∣, of each element in the
image is 1. Let us define a base set B of mappings whose domain has size two and whose image has
size one, i.e. the image has a single element with multiplicity two. Therefore,

 B={b∈M 2∣∀ x , y∈dom(b) , b (x)=b(y)}

Remark: As there are (n
2) elements which could be the image, and ((n−2

2)
2) ways to choose two

elements for the domain which are both disjoint with it, the size of the base set B is (n
2)×((n−2

2)
2).

Lemma 5: The subset of Mk consisting of all mappings which are an extension of a mapping in B is
precisely the subset of Mk which are not partial permutations.

Proof: Let p be a mapping in Mk such that p is a partial permutation. If p is also an extension of a
mapping b in B, then b(x) = b(y) for some distinct x and y, and therefore p(x) = p(y) since p is an
extension of b, which contradicts the fact that partial permutations such as p cannot map two distinct
elements to the same value, therefore p is not an extension of any b in B. Alternately, if m is a mapping
of size k>1 which is not a partial permutation, then there are two distinct values x and y for which p(x)
= p(y) = z, and since B contains all such two-element mappings such that b(x)=b(y)=z, it follows that m
is an extension of a mapping in b. Therefore a mapping in Mk is not a partial permutation if and only if
it is an extension of a mapping in the base set B.

Lemma 6: If b is a mapping in B, and Ek(b) is defined to be the subset of Mk which are extensions of b,
then for k > 0:

C k=∣M k∣−∣ ∪b∈B
Ek (b)∣

Proof: For k>0, Ck is the number of partial permutations of size k which are elements of Mk. By lemma
5, the elements of Mk which are not partial permutations is precisely the subset of Mk which are
extensions of elements in b, which is given by the union over B of extensions of all its elements.

Inclusion-exclusion can be applied to the union. This time, instead of summing over i-wise
intersections of the base set, let us use an alternate form which sums over non-empty subsets of the
base set. First let us define S as the set of all non-empty subsets of B. If s is an element of S, let

I (s)= ∩
b∈ s

E k (b), in other words the intersection of extensions of all the base sets included in s. Then

by inclusion-exclusion,

∣∪b∈B
E k (b)∣ = ∑

s∈S

(−1)∣s∣+1∣I (s)∣.

Lemma 3 applies to these intersections, with one new detail: it is possible that the size of the union
b1∪b2 exceeds k, in which case the intersection is empty as an extension to a smaller size is impossible:

E k (b1)∩Ek (b2)={Ek (b1∪b2) , if b1∪b2 is defined and∣b1∪b2∣⩽k
∅otherwise

This can be extended to larger intersections, which are empty unless all pairwise unions are defined:

∩
i=1

m
E k (b i)={Ek (∪

i=1

m
bi) , if bi∪b j is defined for all i< j⩽m ,and ∣dom(∪

i=1

m
bi)∣⩽k

∅ ,otherwise

It follows that I (s)={E k (∪b∈s
b) , if all pairwise unions in s are defined and ∣dom(∪

b∈s
b)∣⩽k

∅ , otherwise

Let us define S' to be the subset of S for which s in S' has all pairwise unions of its members defined
and the size of the domain of their union is not greater than k. Since I(s) is empty for these excluded
sets, they do not contribute to the summation, and they can be excluded from the summation. If S' is
substituted for S, all of the subsets summed over will have unions whose size does not exceed k, so I(s)
can be replaced:

∣∪b∈B
E k (b)∣ = ∑

s∈S '

(−1)∣s∣+1∣E k (∪
b∈s

b)∣
For any subset of the base mappings b in B with all pairwise unions defined, the union of these
mappings will be a fully-multiple mapping, i.e. it will have mult(y)>1 for each y in its image. There is a
finite set of fully-multiple mappings whose size does not exceed k, and these mappings partition the
elements of S' over which the summation is taken. Because of this partitioning, it is possible to regroup
the summations so that the sum is taken over the set of all possible fully-multiple mappings. Let Tj be
the set of all fully-multiple mappings in Mj. By definition, these mappings are all of size j.

Let t∈T j ,2⩽ j⩽k and define U (t)={s∈S '∣∪
b∈s

b=t}, i.e. U(t) consists of all subsets of the base set B

whose union of elements is the fully-multiple mapping t. By regrouping the elements being summed
according to the partition:

∣∪b∈B
E k (b)∣=∑

j=2

k

∑
t∈T j

∑
s∈U (t)

(−1)∣s∣+1∣E k (∪b∈ s
b)∣

The first two summations are over all fully-multiple mappings t of size less than or equal to k. The
unions ∪

b∈ s
b all evaluate to t, and are therefore all the same size, namely the size of t, and since t is in Tj

its size is j, so the number of extensions of t, ∣E k (t)∣ is just the way to select (k-j) domain elements

from the remaining (n
2)− j domain elements, and then select one of (n−2

2) independent choices of

disjoint image elements for each domain element, therefore ∣Ek (t)∣=((n
2)− j

k− j)×(n−2
2)

(k− j)

and for

brevity, let's call this Ej.k.n. This may be brought outside of the last summation:

∣∪b∈B
E k (b)∣=∑

j=2

k

E j.k.n∑
t∈T j

∑
s∈U (t)

(−1)(∣s∣+1)

Let us once more partition the summation over U(t), which are unions of base set elements that equal t,
into unions of a specific number (i) of base set elements that equal t. Define
U (t , i)={s∈S '∣∪

b∈ s
b=t∧∣s∣=i}, then

∣∪b∈B
E k (b)∣=∑

j=2

k

E j.k.n∑
t∈T j

∑
i=1

∣B∣

∑
s∈U (t , i)

(−1)(∣s∣+1),

which simplifies to:

∣∪b∈B
E k (b)∣=∑

j=2

k

E j.k.n∑
t∈T j

∑
i=1

∣B∣

(−1)(i+1)∣U (t , i)∣

The final summation involving U(t,i) requires enumeration of the various ways in which a fully-
multiple mapping can be decomposed into different unions of mappings in the base set. Further
simplification is possible as shown in the next section.

DECOMPOSING FULLY-MULTIPLE MAPPINGS INTO UNIONS OF BASE SETS

Let us first consider some examples to illustrate the required decompositions. A simple example would
be the case where t has a single element in its image, say AB. The multiplicity of (AB) must be at least
two since t is a fully-multiple mapping. Let us manually decompose such mappings into unions of
members of the base set, and then group them according to size and compute the alternating sum.

If AB has multiplicity 2, in other words the domain of t is composed of two distinct members of X such
that AB is disjoint from both of them, then t must be an element of the base set B, and there is only one
subset of B of size one whose union is t, namely the singleton subset t. So there is only one

decomposition of t containing 1 set, so ∣U (t ,i)∣={1, if i=1
0, otherwise

, and therefore

∑
i=1

∣B∣

(−1)(i+1)∣U (t ,i)∣=(−1)2×1=1.

If AB has multiplicity 3, for example t(CD) = t(CE) = t(DE) = AB, then there are (3
2)=3 base sets,

bCD ,CE→ AB, bCD , DE→ AB, bCE , DE →AB for which any pairwise or three-wise union will equal t. For this case:

∣U (t ,i)∣={3, if i=2
1, if i=3
0, otherwise

 and therefore ∑
i=1

∣B∣

(−1)(i+1)∣U (t ,i)∣=(−1)3×3+(−1)4×1=−2.

If AB has multiplicity 4, for example t(CD) = t(CE) = t(CF) = t(DE) =AB, then there are (4
2)=6 base

sets which can possibly be extended to t, namely bCD ,CE →AB, bCD ,CF →AB, bCD , DE→ AB,bCE ,CF →AB,bCE , DE →AB,
bCF , DE →AB . Which unions of these base mappings equal t?

In order for a union of two of these six base sets to equal t, the domains of b need to be disjoint, and
there are three ways to do this, namely:

 t=bCD , CE→ AB∪bCF , DE →AB, t=bCD , CF→ AB∪bCE , DE →AB, t=bCD , DE→ AB∪bCE ,CF →AB

In order for a union of three of these six base sets to equal t, there are 16 ways, which consist of the

(6
3)=20 possible three-wise unions, minus four whose union has a single element of multiplicity three.

t=bCD , CE→ AB∪bCD , CF→AB∪bCD , DE →AB, t=bCD , CE→AB∪bCD , CF→AB∪bCE , DE →AB,

t=bCD , CE→AB∪bCD , CF→AB∪bCF , DE →AB, t=bCD , CE→AB∪bCD , DE →AB∪bCE ,CF →AB,

t=bCD , CE→AB∪bCD , DE →AB∪bCF , DE → AB, t=bCD , CE→AB∪bCE ,CF→ AB∪bCE , DE →AB,

t=bCD , CE→ AB∪bCE ,CF→ AB∪bCF , DE →AB, t=bCD , CE→ AB∪bCE , DE→ AB∪bCF , DE →AB,

t=bCD , CF→ AB∪bCD , DE→ AB∪bCE ,CF →AB, t=bCD , CF→ AB∪bCD , DE→ AB∪bCE , DE →AB,

t=bCD , CF→ AB∪bCE ,CF →AB∪bCE , DE →AB, t=bCD , CF→ AB∪bCE ,CF →AB∪bCF , DE →AB,

t=bCD , CF→ AB∪bCE , DE →AB∪bCF , DE→ AB, t=bCD , DE→ AB∪bCE ,CF →AB∪bCE , DE →AB,

t=bCD , DE→ AB∪bCE ,CF →AB∪bCF , DE→ AB, t=bCD , DE→ AB∪bCE , DE →AB∪bCF , DE→ AB

All four-wise, five-wise and six-wise unions equal t, since there is no way for them to form anything
smaller. Therefore:

∣U (t ,i)∣={
3, if i=2
16, if i=3
15, if i=4
6, if i=5
1, if i=6
0, otherwise

, and therefore

∑
i=1

∣B∣

(−1)(i+1)∣U (t ,i)∣=(−1)3×3+(−1)4×16+(−1)5×15+(−1)6×6+(−1)7×1=3.

This analysis suggests that there is a method of computing these values recursively. Taking the union of
base sets whose image consists of the singleton set {AB} in an attempt to construct the mapping t is
essentially taking the union of the domains of elements in the base set whose image is AB and whose
domains are two-element subsets of the domain of t. Not all of these unions of two-element subsets will
form the domain of t – some unions might be smaller. Let us quantify this.

Let T(k,i) be the number of ways in which (i) different two-element subsets of a set S of size (k) can be
chosen such that the union of these two-element subsets is S. Note that the (i) subsets which don't

combine to form S form one of the (k
k−1) subsets of size k-1 in one of T(k-1,i) different ways, or one

of the (k
k−2) subsets of size k-2 in one of T(k-2,i) different ways, and so on down to subsets of size 2.

This allows the values of T(k,i) to be computed recursively as shown in Table 2.

Table 2: T(k,i). Let P be a set of size k, and consider the set Q of all two-element subsets of P. How
many subsets R of Q of size i are there such that the union of all elements in R is equal to P?

k \ i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1

3 3 1

4 3 16 15 6 1

5 30 135 222 205 120 45 10 1

6 15 330 1581 3760 5715 6165 4945 2997 1365 455 105 15 1

To see how the recursion works, notice:

• Row 3 would have been ((3
2)
i), but row 2 was multiplied by (3

2) and subtracted.

• Row 4 would have been ((4
2)
i), but row 3 was multiplied by (4

3) and subtracted, and row 2 was

multiplied by (4
2)and subtracted

• Row 5 would have been ((5
2)
i), but row 4 was multiplied by (5

4)and subtracted, row 3 was

multiplied by (5
3) and subtracted, and row 2 was multiplied by (5

2) and subtracted.

In other words, T (k , i)=((k
2)
i)−∑j=1

k−2

(k
j)T (k− j , i)

For purposes of inclusion-exclusion, the alternating sum of each row is of importance, not the
individual values within. Computing the alternating sums for each row in the table, gives 1, -2, 3, -4,5,
or in general, (−1)k×(k−1) . This can be proven by induction as follows. Consider

S k=∑
j=1

(k
2)
(−1) j T (k , j). Evaluation at k=2 gives S2 = -1. Now claim that Sk = (−1)(k−1)×(k−1), Assume

that this is true for all values j < k. By the recursion, S k=∑
j=1

(k
2)
(−1) j((k

2)
i)−∑j=1

k−2

(k
j)S j.

Now ∑
j=1

(k
2)
(−1) j((k

2)
i)=−1, since adding 1 to the summation gives the full expansion of (x+1)

(k
2)

evaluated at x = -1, and substituting the assumed values of Sj gives

S k=−1−∑
j=1

k−2

(k
j)(−1)(k− j−1)×(k− j−1). By rewriting the summation as a double summation in

triangular form, S k=−1−∑
j=1

k−2

∑
l=1

j

(k
l)(−1)(k−l−1), and by multiplying the sum by -1,

S k=−1+∑
j=1

k−2

∑
l=1

j

(k
l)(−1)(k−l). The inner summation is the alternating sum of consecutive binomial

terms, which simplifies using (k
l)=(k−1

l−1)+(k−1
l)so substituting

∑
l=1

j

(k
l)(−1)(k−l)=(−1)(k−1)+(k−1

j)(−1)(k− j) gives S k=−1+∑
j=1

k−2

(−1)(k−1)+∑
j=1

k−2

(k−1
j)(−1)(k− j). The

first summation is (−1)(k−1)×(k−2) and the second summation is again the alternating sum of

consecutive binomial terms and is equal to (k−2
0)(−1)(k−1)+(k−2

k−2)(−1)(k−(k−2))=(−1)(k−1)+1.

Substituting these gives S k=−1+(−1)(k −1)×(k−2)+(−1)(k−1)+1=(−1)(k−1)×(k−1), which completes
the proof by induction.

Note that ∑
i=1

∣B∣

(−1)(i+1)∣U (t ,i)∣ is the negative of this value, i.e. ∑
i=1

∣B∣

(−1)(i+1)∣U (t ,i)∣=−S mult (y).

In some sense, the quantity ∑
i=1

∣B∣

(−1)(i+1)∣U (t ,i)∣can be thought of as the “net value” of the mapping t

towards inclusion-exclusion, so let us call it v(t) for value. For a fully multiple mapping t with a single
element y in its image, v (t) = −(−1)mult (y)−1×(mult(y)−1) .

To generalize now to fully-multiple mappings t that have more than one element in the image, first
consider mappings t with two elements in the image, y1 with multiplicity mult (y1) and
y2 with multiplicity mult(y2). Suppose S is a set of base set mappings whose union is the fully-
multiple mapping t. Since the image of t is {y1,y2} then S can be partitioned into S1∪S 2 where S1
consists of base set elements whose image is y1 and S2 consists of base set elements whose image is y2.
The domain of the union of all base set mappings in S1 is t-1(y1), and the domain of the union of all base
set mappings in S2 is t-1(y2). Let t1 be the restriction of t to t-1(y1), and let t2 be the restriction of t to t-

1(y2). Then t 1∪t 2=t . To decompose t into a union of base set mappings, it is necessary and sufficient to
decompose t1 into a union of base set mappings S1 and t2 into a union of base set mappings S2, then S =
S1∪S 2 is a decomposition of t into base set mappings.

Now, if mult(y1) = k1, then row k1 of Table 2 gives the number of ways in which i base set mappings
can combine to form t1, and similarly, if mult(y2) = k2, then row k2 of Table 2 gives the number of ways
in which i base set mappings can combine to form t2. Consider the full mapping t=t 1∪t 2, and suppose
we want to know the number of ways in which i base set mappings can combine to form t.

Suppose S is a set of i base set mappings that combine to form t. Then these base set mappings can be
partitioned into i1 base set mappings that combine to form t1 and i2 base set mappings that combine to
form t2. Now Table 2 gives the T(k1,i1) ways to choose i1 base set mappings that combine to form t1, and
T(k2,i2) ways to choose i2 base set mappings that combine to form t2. Multiplying these together, gives
T(k1,i1) T(k2,i2) ways to form t out i1 base set mappings whose image is y1, and i2 base set mappings
whose image is i2. However, (i1, i2) is not necessarily the only way to partition the number of base set

mappings. To find the full number of ways to form t out of base set mappings, we must sum over all
pairs of (i1, i2) whose sum is n, i.e. ∑

(i1+i2)=n

T (k1 ,i1)T (k 2 ,i 2). This is exactly the way polynomial

multiplication works.

Now form polynomials p1(x) and p2(x) from the values in the respective rows of Table 2, i.e.
p1(x)=∑ T (k1 ,i) x i and p2(x)=∑T (k 2 , i) xi where the sums are taken over the nonzero values of
the table row, and consider the product of these polynomials. For example, if mult(y1) = 3 and mult(y2)
= 4, then p1(x)=3x2+x3, p2(x)=3x2+16 x3+15 x4+6x5+x6, and the product polynomial is

p1 p2(x)=9x4+51 x5+61 x6+33x7+9x8+x9. Because polynomial multiplication follows the same
rules as computing the number of ways to form t, the polynomial p1p2 shows that there are 9 ways to
form t out of the union of 4 base set elements, 51 ways to form t out of the union of 5 base set elements,
and so on.

It follows that v(t) is simply -1 times the polynomial p1p2(x) evaluated at x= -1. For fully-multiple
mappings where y is the only element in the image, v (t) = −(−1)mult (y)−1×(mult(y)−1) , so it
follows that p1(−1) = (−1)mult(y1)−1×(mult (y1)−1) and p2(−1) = (−1)mult(y2)−1×(mult (y2)−1) ,
therefore

v (t) = − p1(−1) p2(−1) = −((−1)mult(y1)−1×(mult(y1)−1))×((−1)mult(y1)−1×(mult (y1)−1))

and this extends easily to fully-multiple mappings with any number of elements in the image:

v (t) = − ∏
y∈image(t)

(−1)mult(y)−1×(mult(y)−1)

This result is somewhat remarkable because v(t) transforms a sum over a large number of inclusion-
exclusion intersections into the product of a few small integers. It can be substituted in the summation
above to give

∣∪b∈B
E k (b)∣=∑

j=2

k

E j.k.n∑
t∈T j

v (t).

Substituting to get equations for the coefficients:

{C0=1
C1=∣M 1∣

C k=∣M k∣−∑
j=2

k

E j.k.n∑
t∈T j

v (t)

Where ∣M k∣ = ((n
2)
k)(n−2

2)
k

, E j.k.n=((n
2)− j

k− j)(n−2
2)

(k− j)

and

v (t) = − ∏
y∈image(t)

(−1)mult (y)−1(mult (y)−1)

The initial sum over inclusion-exclusion intersections has been transformed into a sum over fully-
multiple mappings. ∣M k∣, E j.k.n ,and v(t) are easily computed by their formulas. The challenge now is
to count how many fully-multiple mappings are possible for each possible image configuration.

SAMPLE CALCULATIONS

Let us evaluate the first few Ck for n=5 as sample calculations for the summation.

C0:

C0 = 1 for all n

C1:

C1 = ∣M 1∣ = ((5
2)
1)(5−2

2)
1

= 10×3 = 30

C2:

C2=∣M 2∣−E2.2 .5∑
t∈T 2

v (t) . Using the formula, ∣M 2∣ = ((5
2)
2)(5−2

2)
2

= 45×9 = 405 . E2.2.5

= 1 by its formula. T2 is the set of fully-multiple mappings of size 2, which is only possible if

the mapping has a single image element of multiplicity 2. There are (5
2)=10 choices for the

image element, and ((5−2
2)
2) = 3 ways to assign two disjoint domain elements to each, so there

are 30 items in this set, and each has v (t) = −(−1)2−1(2−1)=1. The result is
C2=405−30 = 375

C3:

C3=∣M 3∣−∑
j=2

3

E j.3.5∑
t∈T j

v (t). Using the formula, ∣M 3∣ = ((5
2)
3)(5−2

2)
3

= 120×27 = 3240 .

For fully-multiple mappings of size 2, E2.3.5=((5
2)−2

3−2)(5−2
2)

(3−2)

=8×3=24, and while

computing C2 it was shown that ∑
t∈T 2

v (t) = 30, and therefore E2.3 .5∑
t∈T 2

v (t) = 720. Now for

j=3, consider fully-multiple mappings of size 3, which are only possible with a single element in
the image of the mapping with multiplicity 3. With n=5, there are only 3 elements disjoint with
any range element, so there is just one mapping of size three for each of the 10 image elements.
For these fully-multiple mappings of size 3, v (t) = −(−1)3−1(3−1)=−2. Finally E3.3.5 = 1 as
it always is when j=k. Putting it all together yields

C3=∣M 3∣−∑
j=2

3

E j.3.5∑
t∈T j

v (t) = 3240−(720−20) = 2540

C4:

C4=∣M 4∣−∑
j=2

4

E j.4.5∑
t∈T j

v (t). Using the formula, ∣M 4∣ = ((52)4)(5−2
2)

4

= 210×81=17010 .

For fully-multiple mappings of size 2, E2.4.5=((5
2)−2

4−2)(5−2
2)

(4−2)

=28×9=252, and while

computing C2 it was shown that ∑
t∈T 2

v (t) = 30, and therefore E2.4.5∑
t∈T 2

v (t) = 7560. For

fully-multiple mappings of size 3, E3.4.5=((5
2)−3

4−3)(5−2
2)

(4−3)

=7×3=21, and while

computing C3 it was shown that ∑
t∈T 3

v (t) = −20, and therefore E3.4.5∑
t∈T 3

v (t) = −420. For

fully-multiple mappings of size 4, there are no elements of multiplicity 4 for n=5. However,
fully-multiple mappings of size 4 are possible with two elements in the image, each of
multiplicity 2. If the elements in the image are disjoint, e.g. {AB,CD}, then the three elements
which may map to AB are distinct from the three elements which may map to CD, and choosing
two of these three for each yields 3x3 or 9 mappings for each disjoint pair. If, on the other hand,
the elements in the image are not disjoint, e.g. {AB, AC}, then there is an element, in this case
DE, which can map to either but not both. If the element DE is not used, there is one mapping.
If the element DE is used for AB, there are two mappings, and if the element DE is used for AC,

another two mappings, for a total of 5. Of the (10
2)=45 possible images for the mapping,

1
2(5

2)(3
2)=15 are disjoint (by the partitioning formula) and 5×(4

2)=30 are not disjoint (five

choices for the shared element times two of the remaining four for the distinct element). This
yields a total of 15×9+30×5=285 mappings with two elements in the image, each of
multiplicity 2, which are the only such mappings for j=4. Now
v (t) = − ∏

y ∈image(t)
(−1)mult(y)−1(mult (y)−1) yields

v (t) = −(−1)2−1(2−1)×(−1)2−1(2−1)=−1 . Finally E4.4.5 = 1 as it always is when j=k.
Putting it all together yields

C4=∣M 4∣−∑
j=2

4

E j.4.5∑
t∈T j

v (t) = 17010−(7560−420−285) = 10155

C5:

C5=∣M 5∣−∑
j=2

5

E j.5.5∑
t∈T j

v (t). Using the formula, ∣M 5∣ = ((5
2)
5)(5−2

2)
5

= 252×243=61236 .

For fully-multiple mappings of size 2, E2.5.5=((5
2)−2

5−2)(5−2
2)

(5−2)

=56×27=1512, and while

computing C2 it was shown that ∑
t∈T 2

v (t) = 30, and therefore E2.5.5∑
t∈T 2

v (t) = 45360. For

fully-multiple mappings of size 3, E3.5 .5=((5
2)−3

5−3)(5−2
2)

(5−3)

=21×9=189, and while

computing C3 it was shown that ∑
t∈T 3

v (t) = −20, and therefore E3.5 .5∑
t∈T3

v (t) = −3780. For

fully-multiple mappings of size 4, E4.5.5=((5
2)−4

5−4)(5−2
2)

(5−4)

=6×3=18, and while

computing C4 it was shown that ∑
t∈T 4

v (t) = −285, and therefore E4.5 .5∑
t∈T 4

v (t) = −5130. For

fully-multiple mappings of size 5, there must be two elements in the image, one with
multiplicity 2 and the other with multiplicity 3. If the elements in the image are disjoint, e.g.
{AB,CD}, then the three elements which may map to AB are distinct from the three elements
which may map to CD, and there are two ways to choose which domain element will have
multiplicity 2 times three ways to assign two of three domain elements, for a total of 6. If, on
the other hand, the elements in the image are not disjoint, e.g. {AB, AC}, then there is an
element, in this case DE, which can map to either but not both. That element must have
multiplicity three and there are two elements left which must both map to the multiplicity two
element, thus two mappings in this case. Since, as has been shown, there are 15 disjoint pairs
and 30 non-disjoint pairs, there are thus 15×6+30×2=150 fully-multiple mappings of size 5.
Now v (t) = − ∏

y∈image(t)
(−1)mult (y)−1(mult (y)−1) yields

v (t) = −(−1)2−1(2−1)×(−1)3−1(3−1)=2 . Finally E5.5.5 = 1 as it always is when j=k. Putting
it all together yields

C5=∣M 5∣−∑
j=2

5

E j.5.5∑
t∈T j

v (t) = 61236−(45360−3780−5130+300) = 24486

C6:

Because fully-multiple mappings of size 6 can have up to 3 elements in the image, and there are
an increasing number of cases which need to be analyzed for such mappings, this is a good
place to stop and let the computer take over. For the full list of Ck for n=5, refer to table 7-5a.

USE OF SYMMETRY AND ORBITS TO REDUCE COMPUTATIONS

As seen in the sample calculation, manually finding fully-multiple mappings becomes tedious once k
becomes larger than about 5. If there is only one element in the image of the mapping, then finding the

number of fully-multiple mappings is simple. There are (n−2
2) elements disjoint from it that could be

mapped to it, so if the multiplicity of that element is k, then there are ((n−2
2)
k) ways to choose domain

elements for it, and this also puts an upper limit of (n−2
2) on the multiplicity of any image element.

When there are multiple elements in the image of the fully-multiple mapping, the situation becomes
more complicated. Again consider enumerating all fully-multiple mappings with two elements in the
image, each of multiplicity two. Recall that image elements are actually two-element subsets of X, and
the results differ based on whether the image elements are disjoint from one another. For n=5, the
smallest n for which fully-multiple mappings are possible, it was shown in the sample calculation that
there are 9 such fully-multiple mappings if the image elements are disjoint, and 5 such mappings if not.

What if there are more than two image elements? To generalize this beyond two image elements,
consider the set of all subsets of X, each of which subset might be the image of a fully-multiple
mapping. Let the group of permutations on {1...n} act on the set of all subsets of X. This yields a set of

orbits for which the number of fully-multiple mappings with specified multiplicity values is identical.
For example, with two elements in the image, {AB, AC} is a representative of one of the orbits (non-
disjoint) and {AB, BC} is a representative of the other orbit (disjoint). For subsets of size 3, there are
already 5 orbits {AB,AC,AD}, {AB,AC,BC}, {AB,AC,BD}, {AB,AC,DE}, {AB,CD,EF} which do
not fit simply into named categories such as “disjoint.” These orbits are easy for a computer to
generate, although a human might be hard-pressed to patiently evaluate these and their sizes without
error.

Table 3: Let ∣X∣=n, and let Y be the set of all two-element subsets of X such that ∣Y∣=k . Let the group
of permutations on X act on Y. How many orbits are formed? (Computer calculated)

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 1 2 4 6 6

6 1 2 5 9 15 21 24

7 1 2 5 10 21 41 65 97 131 148

8 1 2 5 11 24 56 115 221 402 663 980 1312 1557 1646
REMARK: The numbers in this table are also the number of graphs (up to an isomorphism) with n
nodes and k edges, as given in the OEIS sequence A008406 [3]. This is to be expected because there is
a one-to-one correspondence between these orbits and such graphs simply by letting the n elements of
X correspond to the n nodes of the graph in any desired way. Since the elements of Y are distinct two-
element subsets of X, each element of Y corresponds to a distinct pair of nodes of the graph, and
therefore a distinct edge, so a k-element subset of Y corresponds to k distinct edges on the graph.

To enumerate the complete set of fully-multiple maps to be analyzed, it suffices to take a representative
from each orbit. The representative contains a set of values to use as the image of a fully-multiple
mapping. Enumerate all ways to assign multiplicity values mult(y) to each each y in the image such

that 2⩽mult (y)⩽(n−2
2) (because that is the number of x disjoint with y eligible to match with it), and

∑ mult(y)⩽(n
2) (because the sum of multiplicities over the image is the size of the domain of the

mapping, which cannot exceed the size of ∣X∣. Each of these sets of members of X for the image and
corresponding multiplicity values for each will be referred to as an image configuration. Since the
image configurations will be solved by computer, it is convenient to standardize a representation. The
representation used in this analysis consists of a two-letter domain element followed by a two-digit
multiplicitiy value, repeated as necessary for each domain element, in lexicographic order. For
example, the image configurations discussed above for two elements in the image, each of multiplicity
two, are:

AB02CD02

AB02AC02

which represent the disjoint and non-disjoint image configurations respectively.

To determine the number of image configurations needing to be solved (without additional searches for
orbits once the multiplicities are assigned to the image), orbit sizes can be multiplied by multiplicity
combinations as follows:

Let y1, y2,. .. , yk be elements in the image of a fully-multiple mapping. Let Y(k) be the number of ways

to assign multiplicity values satisfying the constraints described above, namely that each individual

multiplicity ranges from 2 through (n−2
2)and the sum of all k multiplicities is not greater than (n

2).

The Y(k), orbit sizes and total image configurations are calculated by computer. The total image
configurations using this method for n=5 through 8 respectively are 114, 8721, 696840, and
127118173. These numbers are the sum of products of Y(k) and orbits as detailed in the tables below.

To calculate an even smaller set of orbits, it is possible to let the group of permutations on X act not
only upon the set of images, but instead on the set of image configurations, which are pairs of image
elements and multiplicities. This avoids, for example, six separate calculations for AB02AC03BC04,
AB02AC04BC03, AB03AC02BC04, AB03AC04BC02, AB04AC02BC03, and AB04AC03BC02,
which are all clearly equivalent under permutations of A,B and C, but would require six different
computations under the original scheme. Orbits via group action on image configurations were more
difficult to compute, but they reduced the number of image configurations (and consequently, total
computing time) by roughly half once implemented. The last rows in each table 4a through 4d contain
these values, and illustrate the improvement from including multiplicities in the group action.

Table 4a: Computation of number of image configurations to be evaluated for n=5. The total number of
image configurations with and without including multiplicities are 69 and 114 respectively.

Number of image elements, k 1 2 3 4 5 Row Total

Y(k) 2 4 8 11 1 26

Number of image orbits 1 2 4 6 6 19

Y(k) times number of orbits 2 8 32 66 6 114

Number of image configuration orbits 2 6 20 35 6 69

Table 4b: Computation of number of image configurations to be evaluated for n=6. The total number of
image configurations with and without including multiplicities are 3650 and 8721 respectively.

Number of image elements, k 1 2 3 4 5 6 7 Row total

Y(k) 5 25 115 270 247 84 8 754

Number of image orbits 1 2 5 9 15 21 24 77

Y(k) times number of image orbits 5 50 575 2430 3705 1764 192 8721

Number of image configuration orbits 5 30 229 918 1514 834 120 3650

Table 4c: Computation of number of image configurations to be evaluated for n=7. The total number of
image configurations with and without including multiplicities are 295,742 and 696,840, respectively.

Number of image elements, k 1 2 3 4 5 6 7 8 9 10 Row total

Y(k) 9 81 564 2100 4263 4999 3432 1287 220 11 16966

Number of image orbits 1 2 5 10 21 41 65 97 131 148 521

Y(k) times number of image orbits 9 162 2820 21000 89523 204959 223080 124839 28820 1628 696840

Number of image configuration orbits 9 90 992 7109 30727 76057 100264 63312 16052 1130 295742

Table 4d: Computation of number of image configurations to be evaluated for n=8. The total number of
image configurations with and without including multiplicities in the orbits are 62,411,967 and
127,118,173 respectively.

Number of image elements, k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Row total

Y(k) 14 193 1805 9786 33019 74445 116273 125970 92378 43758 12376 1820 105 1 511943

Number of image orbits 1 2 5 11 24 56 115 221 402 663 980 1312 1557 1646 6995

Y(k) times number of image
orbits

14 386 9025 107646 792456 4168920 13371395 27839370 37135956 29011554 12128480 2387840 163485 1646 127118173

Number of image
configuration orbits

14 206 3013 32144 243684 1324616 4980647 12252576 18504464 16052259 7346692 1552365 117641 1646 62411967

COMPUTER ALGORITHMS TO EVALUATE IMAGE CONFIGURATIONS

All computer programs were written in c++ and compiled with gcc version 4.8.4 on Ubuntu Linux
14.04 LTS. The Boost version 1.54 multiprecision package was used to perform arithmetic on integers
larger than 64-bits. The hardware was a HP G60-230US laptop computer (circa 2009) with 4GB RAM,
and a Pentium Dual-Core CPU T4200 @ 2.00GHz with 1MB Level-2 Cache. None of the algorithms
was implemented using any parallel processing or multi-threading, so only one of the processor cores
was being used to perform calculations. Repeated runs of the same program often ran with
approximately 5 percent variations in timing.

For every y in X, and every possible mult(y) value, there are ((n−2
2)

mult (y)) ways to assign domain

elements. If each of the elements of X is assigned a bit to be used in a bitmap, the computer can
accumulate bits in an integer denoting which possible domain elements have been used, and this bitmap
can be tested against additional image elements and their required multiplicity values to examine
whether the new domain elements are free via bitwise AND operation and if so, then set those bits via
arithmetic OR operation to indicate they have been used.

For example, with n=5, let us illustrate the simple image configurations previously discussed, namely
disjoint and non-disjoint with multiplicity of two for each. Bitmaps for all possible two-element
domain assignments for AB, AC, and CD will be needed, for example:

Table 5: Bitmap showing all possible two-element domain element selections for the given image
element, e.g. AB02 can be assigned to {CD,CE}, {CD,DE}, or {CE,DE}

AB AC AD AE BC BD BE CD CE DE

AB02 1 1

1 1

1 1

AC02 1 1

1 1

1 1

CD02 1 1

1 1

1 1

Each row is a bitset with 10 bits. Typical processors have at least 32 bits in an unsigned integer, which
can accommodate up to n=8 (requiring 28 bits). The three rows for each image value are put into an
array, and a data structure is defined containing the array and two other values for its size and the
current bitset under consideration.

Most programmers would start with a straightforward algorithm to test each bitset one-at-a-time against
the other bitsets in order to gauge the performance. The straightforward algorithm is as follows:

Figure 1: “Straightforward” C-language implementation of an algorithm to count the number of
mappings possible for a given image configuration.

struct image_element_t {
 unsigned current_domain_bitmap;
 unsigned total_domain_bitmaps;
 unsigned *domain_bitmaps;
};

/* evaluate_image_configuration
 input:
 first_image_element: beginning entry of array of image elements
 last_image_element: final entry of array of image elements
 output:
 the number of possible mappings where each specified image element
 has the specified preimage size, (i.e. specified number of domain
 elements map to it).

*/
uint64_t evaluate_image_configuration(
 image_element_t *first_image_element,
 image_element_t *last_image_element)
{
 uint64_t num_mappings = 0;
 image_element_t *image_element = first_image_element;
 unsigned bit_accumulator = 0;

 /* loop until all combinations are tested */
 for (;;) {
 /* test the next domain bitmap to see if its bits are completely free */
 if ((image_element->domain_bitmaps[image_element->current_domain_bitmap] & bit_accumulator) == 0) {
 /* bits are free. If this is not the final image value,
 then set the bits and go on to the next image value */
 if (image_element != last_image_element) {
 bit_accumulator |= image_element->domain_bitmaps[image_element->current_domain_bitmap];
 ++image_element;
 image_element->current_domain_bitmap = 0;
 continue;
 }
 /* this was the final image value, so increment the number of mappings found */
 ++num_mappings;
 }
 /* go on to the next bitmap for the current domain element. If this was the final bitmap
 for the current domain element, back up to the previous and increment that instead */
 while (++image_element->current_domain_bitmap == image_element->total_domain_bitmaps) {
 if (image_element-- == first_image_element) {
 /* if the image_element has backed up to to the first image element, it means
 that all domain elements have been tested against each other and the search is complete.
 Return the number of mappings found */
 return num_mappings;
 }
 /* when backing up to a new image element, it is necessary to reset the bits that were set
 for the old image element */
 bit_accumulator &= ~image_element->domain_bitmaps[image_element->current_domain_bitmap];
 }
 }
}

The straightforward algorithm worked well for n<7, however with n=7, it began to experience long
delays computing various image configurations as shown in Table 6.

Table 6: Performance of straightforward algorithm with a selection of n=7 image configurations.

Image Configuration Number of mappings
computed

Time to compute,
seconds

AB02AC02AD02AE02AF02AG02BC02 359501364 7

AB02AC02AD02AE02AF02AG02BC02BD02 2134746351 83

AB02AC02AD02AE02AF02AG02BC02BD02BE02 4743469131 550

AB02AC02AD02AE02AF02AG02BC02BD02BE02BF02 1591247304 1380

With many thousands of image configurations to evaluate, it is clear that this algorithm will not
complete in a reasonable time. Further optimization is necessary.

To further optimize, notice that for n=7, there are 21 domain elements, resulting in 221 = 2097152
possible bitmaps, while some of the image configurations are seen to have mappings in the billions.
Moreover, the number of bitmaps of a specific size are limited by the binomial coefficients, which take

on a maximum value of (21
10) = 352716 for a 10- (or 11-) bit bitmap. Clearly there are many more

pigeons (mappings) than holes (domains of mappings), therefore it should be possible to consolidate
those mappings as a bitmap and a value for further processing. The following code implements this
idea concisely using a std::map data structure from the standard c++ programming library. A std::map
dynamically manages a set of keys and their values while presenting an array-like interface to the
programmer. The keys will be bitmaps representing domain elements which have been used, and the
values will be the number of mappings found whose domain elements are represented by that bitmap.

Figure 2: “Pigeonhole optimization” C++ -language implementation of an algorithm to count the
number of mappings possible for a given image configuration.
/* evaluate_image_configuration
 input:
 first_image_element: beginning entry of array of image elements
 last_image_element: final entry of array of image elements
 output:
 the number of possible mappings where each specified image element
 has the specified preimage size, (i.e. specified number of domain
 elements map to it).

*/
uint64_t evaluate_image_configuration(
 image_element_t *first_image_element,
 image_element_t *last_image_element)
{
 typedef std::map<unsigned, uint64_t> bmap_index_t;
 bmap_index_t b1, b2; /* two maps to alternate as source / destination map */
 bool b_source_dest = true;
 b1[0] = 1; /* initialize the first map to a single bitmap with no bits set */

 image_element_t *image_element = first_image_element; /* to iterate from first to last image element */
 for(;;) {
 /* alternate the source and destination bitmaps once each loop */
 bmap_index_t &source = b_source_dest ? b1 : b2;
 b_source_dest = !b_source_dest;
 bmap_index_t &dest = b_source_dest ? b1 : b2;

 /* clear the destination, and keep a total for this iteration */
 dest.clear();
 uint64_t total = 0;

 /* iterate through the source bitmaps */
 for(std::map<unsigned, uint64_t>::const_iterator i = source.begin(); i != source.end(); ++i) {
 /* iterate through the possible domain bitmaps for the current image element */
 for(unsigned j = 0; j< image_element->total_domain_bitmaps; ++j) {
 unsigned bmap = image_element->domain_bitmaps[j];
 if ((i->first & bmap) == 0) /* if the bitmaps have no bits in common... */
 {
 /* then they can be combined to be tested against the next image element later */
 dest[i->first | bmap] += i->second;
 total += i->second;
 }
 }
 }
 /* return the total when the last image element has been processed */
 if (image_element++ == last_image_element) return total;
 }
}

This algorithm was implemented and was producing nearly instant results for n<7. For n=7, the 696840
image configurations were being processed at an average rate of about 8 per second, indicating that the
program would finish in about 24 hours. Although this was satisfactory, one further optimization was
made once it was observed that many of the image configuration calculations differ only in the final
stages. For example, since both

AB02AC02AD02AE02AF02AG02BC02

and AB02AC02AD02AE02AF02AG02BC03

need to be evaluated, it is inefficient to start each calculation at stage 1, since the initial six of seven
stages involve identical calculations. To capitalize upon this, the set of image configurations to be
evaluated was arranged in lexicographic order. The result of the std::map was saved in a stack for each
intermediate stage. When advancing from one image configuration to the next, the stack is popped one
stage at a time (each stage representing the four characters specifying the image element and
multiplicity), and ceases when the remaining stages match those of the next image configuration to be
evaluated, This optimization took only a few minutes to implement, however it reduced the time to
compute n=7 from approximately 24 hours to 1.5 hours.

ADDITIONAL OPTIMIZATIONS TO COMPUTE N=8

Computing techniques described thus far were successful in computing d7, but were too slow and
memory intensive to compute d8. In order to compute d8, the following additional optimizations were
implemented:

• Arrange all of the image configurations in a directed graph, so that each image configuration is
at most one domain element away from a previous image configuration. For instance, AB03 and
AB04 are one step away since AB04 can be computed from the bmap_index_t results of AB03
by adding one more domain element. It turns out that only about 1% of the image
configurations were more than one step away from another. This might have been remedied by
searching for a better set of representatives from each orbit, but 1% was deemed an acceptable
inefficiency. Once the image configurations were properly arranged in a directed graph, and
“stepping stones” added for image configurations which were more than one domain element
away from another, the graph could be traversed, computing all of the needed image
configurations in the process.

• Eliminate the std::map pointer and search overhead by redefining the bmap_index_t to use a flat
memory scheme. It was noticed that for image configurations with a large domain (of size k, for
instance), many of the std::map structures were full, meaning that they were holding all possible
k-bit bitmaps and associated 64-bit values. When this situation occurs, it is often preferable to
store the values consecutively in memory, if memory locations for each index can be computed.
Routines were written to compute the rank of a k-bit bitmap, as well as the k-bit bitmap
associated with a given rank, so that the value associated with that bitmap could be stored at a
definite, easily computed memory location. Since each 64-bit value takes up 8 bytes, and all
possible bitmaps need to be stored, this brought the memory requirement for n=8 down to

2
(8

2)×8bytes, which is 2GiB. The computer being used had 4GiB of memory so it was able to
perform the calculation without using virtual memory.

Computation and verification of n=8 each required 3-4 weeks of runtime.

Working source code for anyone wishing to examine the techniques or verify the results is available
online at https://github.com/RonNiles/Computation-of-A244493

https://github.com/RonNiles/Computation-of-A244493

VERIFYING THE RESULTS USING A COMPLEMENTARY PROBLEM

The number and complexity of techniques implemented in order to compute dn raises the possibility
that errors in reasoning or implementation might produce erroneous results. Unfortunately, there is no
known test that can be applied directly to the computed value of dn to confirm its correctness. In
situations such as these, one often looks for an alternate method to compute the result, and if both
methods produce an identical result, although not a mathematical proof of correctness, the common
result can be considered a consistency check which lends credence to the correctness of the reasoning
and implementation.

The method used herein to verify the results is to modify the computer program slightly so that it solves
the problem complementary to dn. This complementary problem is so-called because it is can be
performed on the graph complementary to J(n,2). This complementary problem is to find the number of
permutations on X such that p(x) is disjoint from x for all X in x, and will be denoted dn.

The motivation for solving the complementary problem lies in the observation that since Ck is the
number of partial permutations of size k for which m(x) is disjoint from x for all x, that when k=∣X∣
the partial permutations are full permutations satisfying the condition of the complementary problem.
Therefore C∣X∣=d n. Moreover, if the program is modified slightly to search for dn using identical
reasoning, and the corresponding constants are called Ck, then C ∣X ∣=d n. When one considers that the
logic behind the calculations to be performed to evaluate both the original problem and its complement
is the same, yet the quantity and size of image configurations and their evaluation are vastly different,
the fact that they produce results where both C∣X∣=d n and C ∣X ∣=d n as seen in Tables 7-5 through 7-7
serves as a evidence in support of the correctness of the logic and implementation.

Tables 7-5a and 7-5b: Computation of d5 and its complement d5. Note that the consistency check is
valid, i.e. d5 =C10, and d5 = C10

Results for dn, n=5 Results for dn, n=5

k\ (−1)k C k
* (10-k)! Product k\ (−1)k C k

* (10-k)! Product

0 1 * 3628800 3628800 0 1 * 3628800 3628800

1 -30 * 362880 -10886400 1 -70 * 362880 -25401600

2 +375 * 40320 15120000 2 +1995 * 40320 80438400

3 -2540 * 5040 -12801600 3 -30100 * 5040 -151704000

4 +10155 * 720 7311600 4 +262015 * 720 188650800

5 -24486 * 120 -2938320 5 -1346574 * 120 -161588880

6 +34945 * 24 838680 6 +4021945 * 24 96526680

7 -27840 * 6 -167040 7 -6616480 * 6 -39698880

8 +11040 * 2 22080 8 +5377920 * 2 10755840

9 -1720 * 1 -1720 9 -1733240 * 1 -1733240

10 +60 * 1 60 10 +126140 * 1 126140

d5= 126140 d5= 60

Tables 7-6a and 7-6b: Computation of d6 and its complement d6. Note that the consistency check is
valid, i.e. d6 =C15, and d6 = C15

Results for dn, n=6 Results for dn, n=6

k\ (−1)k C k
* (15-k)! Product k\ (−1)k C k

* (15-k)! Product

0 1 * 1307674368000 1307674368000 0 1 * 1307674368000 1307674368000

1 -90 * 87178291200 -7846046208000 1 -135 * 87178291200 -11769069312000

2 +3555 * 6227020800 22137058944000 2 +7965 * 6227020800 49598220672000

3 -81330 * 479001600 -38957200128000 3 -271035 * 479001600 -129826198656000

4 +1197945 * 39916800 47818130976000 4 +5913225 * 39916800 236037019680000

5 -11949138 * 3628800 -43361031974400 5 -87002847 * 3628800 -315715931193600

6 +82686195 * 362880 30005166441600 6 +884399445 * 362880 320930870601600

7 -400122810 * 40320 -16132951699200 7 -6261094035 * 40320 -252447311491200

8 +1348166475 * 5040 6794759034000 8 +30738321675 * 5040 154921141242000

9 -3113171470 * 720 -2241483458400 9 -103009220045 * 720 -74166638432400

10 +4786438257 * 120 574372590840 10 +228929330367 * 120 27471519644040

11 -4677587190 * 24 -112262092560 11 -322129793385 * 24 -7731115041240

12 +2699885595 * 6 16199313570 12 +266680246155 * 6 1600081476930

13 -814646790 * 2 -1629293580 13 -114955943085 * 2 -229911886170

14 +102166425 * 1 102166425 14 +20507308335 * 1 20507308335

15 -3013854 * 1 -3013854 15 -855966441 * 1 -855966441

d6= 855966441 d6= 3013854

Tables 7-7a and 7-7b: Computation of d7 and its complement d7. Note that the consistency check is
valid, i.e. d7 =C21, and d7 = C21

Results for dn, n=7

k\ (−1)k C k
* (21-k)! Product

0 1 * 51090942171709440000 51090942171709440000

1 -210 * 2432902008176640000 -510909421717094400000

2 +20055 * 121645100408832000 2439592488699125760000

3 -1155490 * 6402373705728000 -7397878793231646720000

4 +44935065 * 355687428096000 15982837701176586240000

5 -1250308458 * 20922789888000 -26159941161923272704000

6 +25749785775 * 1307674368000 33672334839458515200000

7 -400575453210 * 87178291200 -34921483507513354752000

8 +4762451163015 * 6227020800 29655882451078595712000

9 -43511565506990 * 479001600 -20842109496353021184000

10 +305663455504617 * 39916800 12201107020686695865600

11 -1644582767904510 * 3628800 -5967861948171885888000

12 +6721007731524275 * 362880 2438919285615528912000

13 -20590820917882110 * 40320 -830221899409006675200

14 +46404302391494325 * 5040 233877684053131398000

15 -74925220247495310 * 720 -53946158578196623200

16 +83541999718579500 * 120 10025039966229540000

17 -61040258771327640 * 24 -1464966210511863360

18 +27027549293371900 * 6 162165295760231400

19 -6393764833511160 * 2 -12787529667022320

20 +640267331029536 * 1 640267331029536

21 -15304715502400 * 1 -15304715502400

d7= 102526835994056

Results for dn, n=7

k\ (−1)k C k
* (21-k)! Product

0 1 * 51090942171709440000 51090942171709440000

1 -231 * 2432902008176640000 -562000363888803840000

2 +24255 * 121645100408832000 2950501910416220160000

3 -1535765 * 6402373705728000 -9832541454177361920000

4 +65602215 * 355687428096000 23333883130750832640000

5 -2004101757 * 20922789888000 -41931399975882633216000

6 +45294002607 * 1307674368000 59229806233299077376000

7 -772877706165 * 87178291200 -67378157730040405248000

8 +10074208135005 * 6227020800 62732303600205343104000

9 -100863289737175 * 479001600 -48313677165370404480000

10 +776092531015977 * 39916800 30979130342058550713600

11 -4571515733275827 * 3628800 -16589116292911321017600

12 +20443995167704325 * 362880 7418716966456545456000

13 -68505263121009015 * 40320 -2762132209039083484800

14 +168779355309831285 * 5040 850647950761549676400

15 -297777625642156695 * 720 -214399890462352820400

16 +362630881480828590 * 120 43515705777699430800

17 -289245414695515110 * 24 -6941889952692362640

18 +139747304707701460 * 6 838483828246208760

19 -36056171198898060 * 2 -72112342397796120

20 +3936173233476456 * 1 3936173233476456

21 -102526835994056 * 1 -102526835994056

d7= 15304715502400

Tables 7-8a and 7-8b: Computation of d8 and its complement d8. Note that the consistency check is
valid, i.e. d8 =C28, and d8 = C28

Results for dn, n=8

k\ (−1)k C k
* (28-k)! Product

0 1 * 304888344611713860501504000000 304888344611713860501504000000

1 -420 * 10888869450418352160768000000 -4573325169175707907522560000000

2 +82110 * 403291461126605635584000000 33114261873105588737802240000000

3 -9935380 * 15511210043330985984000000 -154109766040309811525713920000000

4 +834601635 * 620448401733239439360000 517827250519698469936339353600000

5 -51750714456 * 25852016738884976640000 -1337860336365768737924870307840000

6 +2458746262140 * 1124000727777607680000 2763632588065832552391357235200000

7 -91719326277240 * 51090942171709440000 -4686026794858618912322165145600000

8 +2730957403569465 * 2432902008176640000 6644151751389014081752230297600000

9 -65636054374906540 * 121645100408832000 -7984304424875062931155790561280000

10 +1282813229398258194 * 6402373705728000 8213049689259429265068320735232000

11 -20480119938680495100 * 355687428096000 -7284521188086874529998930329600000

12 +267650609704894203795 * 20922789888000 5599997470250595111271837224960000

13 -2863426007889409067280 * 1307674368000 -3744428795181546015948843479040000

14 +25030137207374224744200 * 87178291200 2182084590240424952124113111040000

15 -178095238585377254997968 * 6227020800 -1109002755052106742719250693734400

16 +1025521344534266069048475 * 479001600 491226364866064701899930002560000

17 -4741168328063756755228860 * 39916800 -189252267917655365647119358848000

18 +17415135946585164999291010 * 3628800 63196045322968246749427217088000

19 -50142224828012177874610380 * 362880 -18195610545589059107138614694400

20 +111222048148181970634320609 * 40320 4484472981334697055975806954880

21 -185860046663668018190725400 * 5040 -936734635184886811681256016000

22 +227246096281814739148275900 * 720 163617189322906612186758648000

23 -195483870207063466692934200 * 120 -23458064424847616003152104000

24 +112042477097522842484565035 * 24 2689019450340548219629560840

25 -39501099274665769293362292 * 6 -237006595647994615760173752

26 +7540995066568632323914350 * 2 15081990133137264647828700

27 -616849595046254423607460 * 1 -616849595046254423607460

28 +12178112442076700695785 * 1 12178112442076700695785

d8= 258081861682902430193

Results for dn, n=8

k\ (−1)k C k
* (28-k)! Product

0 1 * 304888344611713860501504000000 304888344611713860501504000000

1 -364 * 10888869450418352160768000000 -3963548479952280186519552000000

2 +61698 * 403291461126605635584000000 24882276568589314504261632000000

3 -6475196 * 15511210043330985984000000 -100438125227736627119652864000000

4 +471966635 * 620448401733239439360000 292830944357165185844025753600000

5 -25402835304 * 25852016738884976640000 -656714523494146234185807298560000

6 +1048053722436 * 1124000727777607680000 1178013146768094834590821908480000

7 -33962926684872 * 51090942171709440000 -1735197923238802751244427591680000

8 +878829021327369 * 2432902008176640000 2138104890831267223784218460160000

9 -18363203266937060 * 121645100408832000 -2233793705234350475434412113920000

10 +312146065535226734 * 6402373705728000 1998475762329184728684274532352000

11 -4335988557175091796 * 355687428096000 -1542256618155294248071949500416000

12 +49324050030276395787 * 20922789888000 1031996735208673067617329401856000

13 -459500562961008770544 * 1307674368000 -600877108265681352663582216192000

14 +3499039410466433940600 * 87178291200 305040276645919105899190302720000

15 -21697050728260167099952 * 6227020800 -135107986183531208342876783001600

16 +108926773639199134483963 * 479001600 52176098856014208136433451340800

17 -439235282504637671445876 * 39916800 -17532866924681121003570743116800

18 +1407805797230803970109502 * 3628800 5108645676991141446733360857600

19 -3538405116512191886464420 * 362880 -1284016448679944191760208729600

20 +6854393247442700648512089 * 40320 276369135736889690148007428480

21 -10007524601702738547542056 * 5040 -50437923992581802279611962240

22 +10695233353185817040759812 * 720 7700568014293788269347064640

23 -8045466948531950619496584 * 120 -965456033823834074339590080

24 +4034275711744410085123835 * 24 96822617081865842042972040

25 -1244897646707282800681148 * 6 -7469385880243696804086888

26 +208111939356173315343762 * 2 416223878712346630687524

27 -14914109519392909998284 * 1 -14914109519392909998284

28 +258081861682902430193 * 1 258081861682902430193

d8= 12178112442076700695785

REFERENCES

[1] J. East, R.D. Gray, Diagram monoids and Graham–Houghton graphs: Idempotents and
generating sets of ideals, J. Combin Theory Ser. A 146 (2017) 63–128

[2] The Online Encyclopedia of Integer Sequences, http://oeis.org, 2017, Sequence A244493.

[3] http://www.cut-the-knot.org/arithmetic/combinatorics/InclusionExclusion.shtml

[4] Weisstein, Eric W. "Derangement." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Derangement.html

[5] The Online Encyclopedia of Integer Sequences, http://oeis.org, 2017, Sequence A008406.

	ABSTRACT
	DEDICATION
	INTRODUCTION
	BIJECTION WITH CERTAIN PERMUTATIONS OF VERTICES OF J(n,2)
	INCLUSION-EXCLUSION IN GENERAL
	INCLUSION-EXCLUSION APPLIED TO A244493
	TABLE OF BASE SET MAPPINGS FOR n=5
	INCLUSION-EXCLUSION APPLIED TO THE COEFFICIENTS Ck
	DECOMPOSING FULLY-MULTIPLE MAPPINGS INTO UNIONS OF BASE SETS
	SAMPLE CALCULATIONS
	USE OF SYMMETRY AND ORBITS TO REDUCE COMPUTATIONS
	COMPUTER ALGORITHMS TO EVALUATE IMAGE CONFIGURATIONS
	ADDITIONAL OPTIMIZATIONS TO COMPUTE N=8
	VERIFYING THE RESULTS USING A COMPLEMENTARY PROBLEM
	REFERENCES

