Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A248572
a(n) = 29*n + 1.
1
1, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1277, 1306, 1335, 1364, 1393, 1422
OFFSET
0,2
COMMENTS
Numbers congruent to 1 mod 29.
Both A141977 and A059256 give the primes in this sequence.
FORMULA
a(n) = 29*n + 1.
G.f.: (1+28*x)/(1-x)^2. - Vincenzo Librandi, Oct 26 2014 [corrected by Georg Fischer, May 24 2019]
E.g.f.: (1 + 29*x)*exp(x). - G. C. Greubel, May 24 2019
EXAMPLE
For n = 5, 29n + 1 = 145 + 1 = 146.
MATHEMATICA
29Range[0, 60] + 1 (* Alonso del Arte, Oct 09 2014 *)
CoefficientList[Series[(1+28x)/(1-x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 26 2014 *)
LinearRecurrence[{2, -1}, {1, 30}, 50] (* Harvey P. Dale, Oct 08 2019 *)
PROG
(Python)
for n in range(61):
print(29*n+1, end=', ')
(PARI) vector(60, n, n--; 29*n+1) \\ Derek Orr, Oct 08 2014
(Magma) [29*n+1: n in [0..60]]; // Vincenzo Librandi, Oct 26 2014
(Sage) [29*n+1 for n in (0..60)] # G. C. Greubel, May 24 2019
(GAP) List([0..60], n-> 29*n+1) # G. C. Greubel, May 24 2019
CROSSREFS
Cf. A141977 (Primes congruent to 1 mod 29).
Cf. A059256 (Primes p such that x^29 = 2 has no solution mod p).
Cf. A195819 (multiples of 29).
Sequence in context: A048451 A154796 A350316 * A248739 A004962 A271744
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Oct 08 2014
STATUS
approved