Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).
8

%I #10 Jan 21 2016 14:44:26

%S 0,8,5,1,5,9,8,2,2,5,3,4,8,3,3,6,5,1,4,0,6,8,0,6,0,1,8,8,7,2,3,6,7,3,

%T 4,5,9,5,7,3,3,9,5,0,8,5,8,6,8,7,7,3,2,0,4,6,7,1,0,3,4,3,2,0,5,3,3,0,

%U 8,5,7,6,7,5,0,8,7,1,7,6,6,5,1,1,1,7,3,3,8,6,7,5,8,1,8,5,0,2,0,7,2,0,5,4,1

%N Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>

%F zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5).

%e 0.0851598225348336514068060188723673459573395085868773204671034320533...

%t Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First]

%o (PARI) zetamult([4,3]) \\ _Charles R Greathouse IV_, Jan 21 2016

%Y Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

%K nonn,cons,easy

%O 0,2

%A _Jean-François Alcover_, Jun 16 2015