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580.

ON THE NUMBER OF DISTINCT TERMS IN A SYMMETRICAL OR
PARTIATLY SYMMETRICAL DETERMINANT.

[From the Montlly Notices of the Royal Astronomical Society, vol. XXXIV. (1873-—187+),

pp. 303—307, and p. 335.]

Tre determination of a set of unknown quantities by the method of least squares

is effected by rmeans of formulz depending on symmetrioal or partially Symmc-tric:ﬂ
determinants; and it is interesting to have an expression for the number of distinct
terms in such a determinant.

The terms of a determinant arve represented as duads, and the determinant itself
as a bicolummn; viz. we write, for nstance,

aa \ to represent the determinants | aq, ab, ap’, ag

bh ba, bb, bp’, bg
j74 pa, pb, pp, p¢
97 ) qa, qb, q’, 99

h that in general rs=sr, then the determivant
the determinant just written down, for which
. being distinct
( ar )

This being so if the duads are suc
is wholly or partially symmetrical ; viz.
the bicolumn contains such symbols as pp’ and gg’, (each letter p, ¢, ..

from every letter p’, ¢,...) is partially symmetrical, but a determinant such as { 00 ¢
1 cc )
A determinant for which the bicolumn has m rows aa, bb, &c,

is called a determinant (m, n); and the number ol distinct
s taken to be ¢ (m, n); the

is wholly symmetrical.
and n rows pp, qq, &ec.
terms in the developed expression of the determinant 1
problem iz to find the number of distinct terms ¢ (m, n).

C. IX.
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186 ON THE NUMBER OF DISTINCT TERMS IN A SYMMETRICAL OR (580

Consider a determinant (m, n) where n is not =0; for instance, the determinant

~above written down, which is (2, 2); this contains terms multiplied by qa, gb, qp’, ¢y

o bb
respectively: where, disregarding signs, the whole factor multiplied by ga is ap’?—.
. - . - - pq’
which is a determinant (1, 2), and similarly the whole factor multiplied by ¢b is o
[ aa
determinant (1, 2). But the whole factor multiplied by ¢p’ is the determinant 1 bl
L : . Py
which is a determinant (2, 1), and’ the whole factor multiplied by ¢¢” is also a determ-

mmant (2, 1). '

Hence, observing that ga, ¢b, ¢p’, q¢' ave distinct terms occurring only in the last

line of the determinant, the number of distinct terms is equal to the sum of the
numbers of distinct terms in the several component parts, or we have

¢ (2, 2)=2¢ (1, 2)+24(2, 1);

and so in general : _ .
¢ (m, ny=me¢ (m — 1, n)+ nd (m, n—1).

Consider next a completely symmetrical determinant (m, 0); for instance (4, 0), the
determinant B

aay, ={ aa, ab, ac, ad |.
bb] ' ba, U, b, bd I
ce ‘ ca, cb, cc, cd

ddg v da, db, dc, dd !

oa
We have first the terms containing dd; the whole factor is bb}, which is a

e

determinant (3, 0); secondly, the terms containing ad.de, or the like combinations,
@
bd .db or cd.dc; the whole factor multiplied by ad.da is { b:}’ which is a determ-

mant (2, 0); thirdly, the terms containing ad.db+bd.da, = 2ad.bd; or the like
combinations 2ad.cd or 2bd.cd: the whole factor multiplying the term 2ad.bd is

cc
{b }, which is a determinant (1, 1). Hence observing that ad, bd, ¢d, =da, db, dc,
@

and dd are terms occurring only in the last line and column of the original determinant,
it 1s clear that the number of distinct terms in the original determinant is equal to
the sum of the numbers of distinet terms in the component parts, or that we have
¢4, 0)=¢(3, 0)+3¢b(2, 0)+3¢p (1, 1); and so in general:

¢(m, 0)=¢ (m—1, 0)+ me (m — 2, O)-i—ﬁ—fgl_l ¢ (m—3, 1)
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580] PARTIALLY SYMMETRICAL DETERMINANT. 187

together with the initial values ¢ (0, 0)=1,

The two equations of differences,
of the

(1, 0)=¢(0, 1H)=1, ¢(2, OH=¢1, 1)=¢(, 2)=2, enable the calculation
successive values of ¢ (m, m): viz. amanging these in the order
¢ (0, 0),
¢ (1, 0), ¢(0 1)
¢ (2 0), ¢, 1), ¢ 2),
$ (8, 0), &e, &ec,

we calculate simultaneously the lines ¢ (m, 0), ¢ (m, 1); and thence sucsessively the
remaining lines ¢ (m, 2), ¢ (m. 3), &ec.: the values up to m+n =6 being in fact

17, 23, 24, 24, 24
. 73, 109, 118, 120, 120, 120,
' 383, 618, 690, 714, 720, 720, 720:

! where the process for the first two lines is

5= 242 14+ . 1, 6=2. 24 2
| 17= 543. 2+3. 2 23=3. 64 5,
7:3=i7+4. 5+6. 6, 109 =,. 23+ 17,
388 =73 +5.17 + .23, 618 = 5.109 + 23,

the larger figures being those of the two lines, and the smaller ones numerical

multipliers. And then for the third line, fourth line, &c., we have
6=1. 2+42. 2, 120 =2. 24 +3. 24,
2 =2. 6+2. 6, : Tld=3.120 +4.118,
118 =3. 24+2. 23
_ 690 = 4. 118 + 2. 109,
and so on.

t, the easiest way of obtaining the actual numerical values; but we

This is, in fac
may obtain an analytical formula. Considering the two equations

¢ (m, )=mp(m—1,1)+¢ (m, 0),

¢ (m, 0)=¢ (m—1, 0)+me¢p(m—2, 0)+ m—”;:~} ¢ (m—3, 1);

24—2




188 ON THE NUMBER OF DISTINCT TERMS IN A SYMMETRICAL OR [580

and using the first of these to eliminate the term ¢ (m—3, 1) and resulting terms
$(m—4, 1), & which present themselves In the second equation, this, after a succession
of reductions, becomes

¢ (m, 0)= ¢(m—1,0)
+(m--1)$p(m—-2, 0)

m.m—1

+—2—{¢(mﬁ3, 0)

+(m—38)p(m—4 0)

+(7n—3)...3.2¢(1: 0)
+(m-—-3)...3.2.1 }s

or, ohserving that the last term (m—3)...3.2.1 is, in fact, :(7‘n—3)...3.2.1¢)(0, 0),
this may be written:

2 (m, 0)— ¢ (m —1, 0)—(m - Dop(m-—-2, 0)= ¢ (m~—1, 0)
+(m—=1)¢(m—2 0)
4 (m—=1)(m—2) ¢ (m—3, 0)

+(nz-i)..3.2.1¢( 0, 0).

And hence assuming

w= (0, 00+ o>+{%¢<2, 0) + ... +%—7E¢(m, 0+ .oy

we find at once

U
2(—{@—u-xu=1_w,

that is,
2@=dm<1 +z+ 11>,
% 1l—=

or integrating and determining the constant so that u shall become =1 for & =0, we
have 2

wherefore we have

. $x-12?
$p(m, 0)=1.2...m coefft. ™ in 51— :

—-&

(1]
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580] } PARTIALLY SYMMETRICAL DETERMINANT.

Developing as far as af the numerical process is

{ - ..
1 1 1
1 3 § i5 I8 3910 FONE
: 1 1
1 I 39 387
_ 1 1
1 3 ¥ 15 TET 3810 T80
1
1 3 37 162 535
1 1
3 71 P
387
3 7 5 o7 3
1 3 £ 15 Ter r$%s Ti0%0
3 5 35 83 K
1 b § 15 125 355 TooT
3 7 25 27 3:
1 ¥ k] ig 357 980 1oy
. _ 3 7 25 :
3 i is 35 755 3560
3 3 9 _7 25
£ e DY %% 437
& 5 b 35
s Ty 1¥s 705
35
o5 56 SUbEY
63 63
756 512
3.1
Tors
5 17 73
1 1 1 & T 130 150
xbyl 1 2 6 24 120 790
1 1 2 5 17 73 388

agreeing with the former values.

The expression of ¢ (m, 0) once found, it is easy thence to obtain

3x+1z?
¢ (m, 1)=1.2....mcoefft. 2™ in _6_—_—:;
1 —az)*

tz+iz?

d(m, 2)=1.2... mcocfft. 2™ in 2o
(1-a)!

e
¢(m, 3)=1.2....mcoefft. 2™ in 2 3elrtis

1 -

and so on, the law being obvious.

[dddition, p. 335.] The generating function

x" Pleagts
u, =1+u]x+...+uni—é—-——n+..., =~/1, —,
2., -2
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190 ON THE NUMBER OF TERMS IN SOME DETERMINANTS. [580

was obtained as the solution of the differential equation
du 1 )
2@—26 <1+x+l—_-x— .
Writing this in the form
2(1 —x)%:u@——ﬁ),
we at once obtain for u, the equation of differences,

Up =Nty —3 (0 —1) (n— 2)upy_y;
— —

and it thus appears that the values of u, (number of distinct terms in a symmetrical
determination of the order m) can be caleulated the one from the other by the process

n=1, l=1. 1,
=2 9=1. 1,
:.—.3’ 5—3 2’— 1 .1,
= —_ _1 —
4, 17 4 9 3 3 ;5
3, 73=35.17T— 6.2, ¢
=6, 388=6.73~10.5, =128
- €0
C. _:)/‘r-'g’-
which is one of extreme facility. —
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