This paper contradicts and provides an alternative result for the problem and solution from the following pages on ProjectP and the Online Encyclopedia of Integer Sequences respectively.

http://www.math.ucsd.edu/~projectp/warmups/eT.html https://oeis.org/A262402

Formula for number of triangles in a 3 x n grid

The method we will use is to first count the number of combinations of three dots within a $3 \times n$ grid and then subtract the number of three collinear points.

So, we get: 3*n choose 3 - # of collinear points

First, we can subtract the number of collinear vertical lines, which is n.

Then, we can subtract the number of horizontal lines. From each row we will have n choose 3 (for n > 2) combinations of lines and since we have three rows, it is 3*(n choose 3).

For example, the horizontal 3x4 collinear points would be

•		•			
		•			
		•			•
•		•			
	•	•			
•		•	•	•	
•					
•		•			
	•	•	•	•	

• • •

• •

So, now we are at 3*n choose 3-n-3*(n choose 3) — collinear points not horizontal or vertical

Simplified, this is $4n^3 - 3n^2 - n$

The simplest case is 3×2 , which is not difficult to see that there are no non horizontal or vertical collinear points.

•

However, when n > 2, we need to consider slopes +-1 (if we view this grid as regular x, y axes). Since for

slopes of +-1, you are moving two spots horizontally, there will be n-2 lines for both upwards and downwards diagonals as seen below in the 3 x 5 grid. So we can subtract 2(n-2) for n>2.

downwards diagonals as seen below in the 3 x 3 grid. So we can subtract 2(n-2) for n>2.

• • •

•

•

• •

•

•

Likewise, when n>4, we need to consider slopes +-1/2. Similar to the previous case, we count the number of lines by n-4 since we are moving 4 spaces horizontally. So we can subtract 2(n-4) for n>4.

• • •

• •

• • •

•

• • •

• •

• •

•

• • •

• •

• • • • •

We can see inductively, that we will be subtracting 2(n-k) for n>k, where k is even. So, our final result is:

n is even case:

We have
$$-2(n-2) - 2(n-4) - \dots - 2(n-k) = -2((n-2) + (n-4) + \dots + 4 + 2)$$

= $-4((n-2)/2 + (n-4)/2 + \dots + 3 + 2 + 1) = -(n \cdot 2)/2 + n$

n is odd case:

We have
$$-2(n-2) - 2(n-4) - \dots - 2(n-k) = -2((n-2) + (n-4) + \dots + 3 + 1)$$

= $-(n^2)/2 + n - 1/2$

Putting it all together, we get two cases:

n is even:

$$4n^3 - (7/2)n^2$$

n is odd:

$$4n^3 - (7/2)n^2 - \frac{1}{2}$$

**Note that we ignored the case where n=2, however it can be checked to see that 2 is still correct for the even formula.

		_	