Experiments and Discoveries in ¢-Trigonometry

R. Wm. Gosper
Abstract

We introduce a g-generalization of the sine and cosine functions, related to the ¥ functions, but (as revealed by
computer experiments) possessing addition and multiplication formulas more analogous to those of ordinary
sin and cos. These formulas then contribute identities to 1 theory, and hint of a more natural formulation of
¥ functions as outgrowths of elementary functions. Nevertheless, this paper can be read without knowledge
of ¥ functions—it was certainly written that way.

Preliminaries
In order to g-generalize the sin function, we start with the ¢-factorial,

_ 1—q" l-ql-¢* 1-¢
Zlgi=(1—-q) % “=" , g-Fac

(the latter making sense when z is an integer), and try to g-generalize the reflection formula which connects
ordinary factorial with ordinary sin:

T
—DI(=2)= . Ref
(=1 (-2 = = (Ref)
For g-newcomers, the connection between g-factorial and ordinary factorial (or I'(z+ 1)) is
1—q" [1—g"\" 1\* !
lim z!; = lim 7 Z+Z<1qn> :H i (n+) :127:2!
qg—1 qaln21 —q —q n21n—|—z n !
and, from (g-Fac),
Z!q 1 1— qn+z—1 1— qz
_Fe g ] -
— 1) — gntz —
(z—1)l e 1—g¢q 1—g¢q
for all z. (Most formulas will require |g| < 1 for convergence.)
Fossickings and Findings
A good stab at g-generalizing (Ref) might be
fa(2)
— D (=) = 24 Stab
(2 Mg (—2)lg sing 77’ (Stab)
with f;(2) chosen so that sing(z —7) = —sin, z. But after a derivation completely parallel to that upcoming,

we would discover that the resulting definition of sin; would be more appropriate for sin 5. Thus warned,
we rewrite (Stab):

fa(2) -
(z =1l (=2)lp = sir(iqim' (Hindsight)
If, for all ¢ and z, we are to have
sing m(z — 1) = —sing 7z,

then we can divide (Hindsight) by itself with z <— z — 1 to get

1— q2(z—1) - fq(z)
1— q2(17z) fq(Z _ 1)

or
fq(2) _ q2(z—1)
foz=1)
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Thus f,(2) = ¢**~Y times some function of ¢ which we shall call 7, by analogy with (Ref). (The function
fq(2) could also contain a period 1 factor, but this we absorb into sin, 7z.) Solving (Hindsight) for sin,,

qz(z—l)ﬂ_q
2= 2 (=2) 2"
q q

. 1 e .
To determine 7, put z = 5 and require sin, 5 = 1:

S, T2 1=

Lo 12 2y L (1—¢*)?
LORES q4(7§).q2 =(1-4¢)q* I | 7(1_(12”_1)2.
n>1

Incidentally, dividing both sides by 1 4 ¢ gives a g-generalization of Wallis’s product:

Ty _ % 1_q2n 1_q2n
1+q_q Hl_q2n711_q2n+1'

Dividing (Sindef) by ¢~ % — ¢7,
Z2

singmz q u

g —q  2lg(—2)pl—g¢*
Letting z — 0,
msing 0 sing 7z Tq

= lim = =:1l,,
2Ilng 2=0 g% —q* 1—¢2 Mg

corresponding to
. sinmz
lim
z—0 z

= T.

(SinDef)

(mDef)

(Small z)

In the formulas to follow, it will turn out that II, arises much more frequently than 7, despite the former

blowing up as ¢ — 1. Here is its connection with 1 functions:

1 (1—q¢°")? 9205 93(0,97)
Hq:q4H(1,q2n71)2: 5 4

n>1
=il +g+a® ++¢"+ )2

Rewriting (SinDef) with explicit products, we see its ¢} connection:

sin ry — q<z*1/2)2 H (1— @2n2%)(1 — g2 +2:-2) M
g T2 =

— =1q
- (1= g2n1)2 Oa
z2H ( —z z) H (1 ( —z z>2 q2n )
=4q qd  —q -9 —q) 7753
' b (1—q*)?
2?2 I ( —z z) ( —z z)3 Z q2n
=q =)= (¢ —q —
! s d=g)?
2
R
(1 _ 21'7,)2 (1 _ 2n)4
+( s 2)5 n>1 q n>1 q
q q B)

(IISer)

(SinProd1)

(SinProd2)

(SinEx)



With the help of MACSYMA’s Taylor (series) facility, we see the successive coefficients form the following
(parabolic) tableau:

64 154 154 64
100 232 232 100 1
24 1564 344 344 154 24
1 40 232 504 504 232 40 1
2 64 344 728 728 344 64 2
4 100 504 1040 1040 504 100 4
8 8
4 4

q—gz _q—7z q—5z _q—3z q—z _qz q3z _q5z q—7z _qu

1 1 0

2 2 1

1 4 4 1 2

2 8 8 2 3

4 14 14 4 4

8 24 24 8 5

1 14 40 40 14 1 6

2 24 64 64 24 2 7

4 40 100 100 40 4 8

8 8 9
4 4

154 728 1472 1472 728 154
232 1040 2062 2062 1040 232 1
24 344 1472 2864 2864 1472 344 24
40 504 2062 3948 3948 2062 504 40
64 728 2864 5400 5400 2864 728 64
1 100 1040 3948 7336 7336 3948 1040 100 1
2 154 1472 5400 9904 9904 5400 1472 154 2

20
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—

2n+1)z

On the plausible assumption that the coefficient sequence under g~ is just the displacement by n(n+1)

rows of that under ¢?, we can write

: n Z2 T TNn(n —(4n z n z 3
sing szg(q)Z(fl) q +i+n( +1)(q (2n+1) ,q(2 +1) ) (SinSer)
n>0

=g(q) Y (~1)rgnmER’

n>—oo

where
9(q) = 142¢+4¢* +8¢° + 14¢" +--- .

Given a machine that will easily compute a couple of dozen terms of this series, we might think to reciprocate
the above equation, “discovering”

1
—— =1-2¢+2¢* —2¢° +2¢*¢ —--. (GaussKnewlt)
9(q)
’ﬂ2
= > (-0
n>—oo
=1y.

Once before we have seen a quadratic progression of exponents—in the expansion of II;. Reciprocating
(ITSer),

L)
N

=1-2¢+43¢> —6¢>+ 11¢* — 18¢° +28¢% — 44¢" +69¢® — - - - .

=
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This looks a little like g(—¢). Let’s try dividing this last series into that of of g(—q):
9~y =3 (1 + >+ ¢° + ¢+ ¢ +---).

But this is just |/II42, so

L2 17q2n711+q2n
g(-g) =Y =]

2 1
n>11+qn 1=

Thus

1+q2n—11+q2n 1+qn
Q(Q): H 1—g2n—11— ¢g2n = H 1—qn
n>1 n>1

(=g H(1—g>)1—gn L (1-¢")(1—¢*)

n>1

(Combinatorially, g is the generating function for partitions into red integers and blue odd integers.) Another
relation between g(g) and I, arises from dividing both sides of (SinSer) by ¢~* — ¢* and letting z — 0:

My = g(a) > (~1)"(2n + 1)g" )"

n>0
Using (GaussKnewlt), this becomes
—1 Iq 23
¢is=1]10-9")
9(a) ,gl
2
= (1-2g+2¢' =2 +20° — ) (14% +¢% +4% +)

—1-3¢"2 45423 — 745 +

Double and Triple Angles

Before trying to guess how to g-generalize cosine, we can first test our sin, by seeking analogues of

sin2z = 2sinz /1 — (sin 2)2, (Double)

sin 3z = 3sin z — 4(sin 2)°. (Triple)

To see why it is too much to expect that these identities Should2 remain true with sin merely replaced by
sing, note that all of the terms of the latter contain a factor of ¢*. Thus in (Triple), the sin, 3z would have
terms of the form ¢%% +1+intk=

But suppose we try

, which would be of a different order from those of the 3sin, z on the right.

sing 3z = Ay sing z — By(sings 2)°, (TriTry)

with A, and B, to be determined. Then all three monomials have terms containing the same (9th) power
of qzz. Solving for A,

3 <3 3 62 182 3 -3
_ sing 3z B (sings 2) _1-¢%1-9¢ sin, 3z g Sitg 2 (sins 2)?
77 sing z 7 singo 2 1 —¢18% singz \1—¢% 11 —¢b

Letting z — 0 (using (Small z)),

1 g
3Hq9'

1 .
Av = g (T +5, T sings 0)%) =



Now putting z = 5 in (TriTry),

1=A,-B

q q»

so (TriTry) becomes

1 1
sing 3z = 3 11_;[‘19 singe z — (1 + 3 gqg ) (sings 2)°. (g-Triple)
q q

But is it true? As of this writing, the author has not sought a formal proof, being more confident in
MACSYMA'’s empirical confirmation to hundreds of terms than of a page or two of allegedly rigorous prose.

An alternative expression for B, results from using the expansion (SinEx) and the value of A, in (TriTry),
dividing through by (¢73% — ¢%)3, and finally letting z — 0. We then have the equation

111 11 1 > '8
B = 1 — q = q — - - 9 S
1 + 3 IIgo Hgg 3 + Z (1 — g2n)2 Z (1 — gi8n)2

n>1 n>1

Note that as ¢ — 1, (¢g-Triple) reverts to (Triple), and in general,

lim {sing, cosq, mq} = {sin, cos, 7},
q—1

What about (Double)? There is no way to choose a (nonzero) power of ¢* to match that 1 under the /—,
so let’s get rid of the 1 by squaring and distributing;:

(sin22)? = 4(sin 2)? — 4(sin 2)*.
Now we can match powers of qz2, using the form
(sing 22)% = A, (sings 2)* — By(sing 2)*. (DubTry)

Substituting z = 0 and z = % as we did in (TriTry), we find

2
<1nq>2
A= (=
2 [l

and
0=A,— B,
Thus (DubTry) becomes
1
sing 2z = — Iy \/(sinq4 z)? — (singz 2)4. (¢-Double)
2 T4

As Taylor also confirms (g-Double) for hundreds of terms, we are encouraged to consider cos,. We can try
to define cos, by g-generalizing any or all of the following:

cosz = /1 — (sin z)? (One)
sin 2z
= T
2sinz (Two)
= sin(§ — 2). (Phase)

(One) seems out because of the naked 1. (Two) holds hope, but it’s not obvious which n to choose when
introducing sing». Also, (Two)’s g-generalization involves synthesizing a coefficient A, which would then

5



need to be determined by choosing an amplitude for cos,. Since we would obviously choose amplitude 1,
and (Phase) already has that property, let’s naively try

cosq 2 1= sing(§ — 2) (CosDef)

and see if later we can find an interpretation of (Two). Combining (CosDef) with the (SinProd)s,

) 5 1— q2n—22—1 1— q2n+22—1 5 194 iz lnq
cosq mz = sing 7(5 — 2) = ¢ H ( = )2(n1)2 ) = Ua(izlng) 5 )
n>1 q 4
2n—1
2 - q
:qz (1_(q Z_qZ)Q on—1 2)
et (1—¢*1)

Expanding a few Taylor terms,

2

COSq Tz = qz (1 _ (q72z _2+q22)q_ (2q72z _4_|_2q2z)q2 _) )

At greater length, the coefficient tableau is

_q—Gz q—4z _q—2z 1 _q2z q4z _q6z
1 q°
1 2 1 q*
2 4 2 q>
4 8 4 7
1 8 14 8 1 q*
2 14 24 14 2 q°
4 24 40 24 4 q°
8 40 64 40 8 q’
14 64 100 64 14 ¢
1 24 100 154 100 24 1 q°
2 40 154 232 154 40 2 q'°
4 64 232 344 232 64 4 gt
8 100 344 504 344 100 8 q'?
14 154 504 728 504 154 14 q'?
24 232 728 1040 728 232 24 gt

and thus it appears that we can write

cosymz = g(q) {1+ Y (=1)"q" (¢ 2" +¢*")
n>1

=glg) D (~1)"g"",

n>—oo



Setting z = 0 corroborates (GaussKnewlt).

Now that we see that all the terms of cos, 2, like those of sin, z, contain a factor of qzz, it becomes clear
(within a constant) how to g-generalize (Two):

sing 2z
cosgz z = Ag—1—. TwoTr
e “singe 2 ( ¥)
Letting z — 0 determines A4, and solving for sin, 2z,
sing 2z = —L sing2 z cos,2 2. (g-Doubley)

q2

We don’t even need to Taylor this one, as it yields to straightforward rearrangements of the infinite products.
Such manipulations confirm the more general results,

sings w2 sings (241 ) singe w(z + 2) ... singe w(z + EL)
(=)t 1) (1 —g?n=1)2
=q 12 Sll’lq kmz H TI)QIC (Prod)
n>1
2 02k 2k
= 77(q2) 5 % sing kmz (EtaProd)
n(g*)? n(q®)
k
1159 1 S V&
_ Iy 34 ZS gk sing kmz (Pow?2)
Hq qu Hq4 HEA
q2
k .
_ I sing kmz (Un'Tel)
Iq (k=1)(k+1) HQ;I 2n—3 7
[LESDICIS ) q 2273 (k—1) (k+1)
q 6 H Hzn—lk q
TLZI q2"k
where 7(q) is the Dedekind eta function:
4 5

1 n 77(q2) 6 1,
(@:=q7 [[1-¢". Tg=-—~, 0°=—3 —16T, 1%
et n(q) I

(This last relation is equivalent to Jacobi’s “@quatio identica satis abstrusa’.)

The relation (Pow2), which is restricted to when k is a power of 2, follows from (¢-Doubles). (UnTel)
regeneralizes (Pow2) to arbitrary integer k by “untelescoping” (Pow?2) after factoring out sufficient powers
of ¢ for convergence. It retelescopes to (EtaProd) when reexpressed in 7 functions.

Having now found cos, z := sing(§ — z) compatible with both (Two) and (Phase), we can use (g-Doubley)
to determine that

. II
coSg2 G =sing § = H—qz. (Root2)
a

Further emboldened, we use the same method as in (¢-Triple) to determine
c08q 22 = (cos,2 2)% — (singz 2)?, (g-Doubles)

and again find empirical confirmation. Writing z <~ 7 — z in (¢g-Double),

1
sing 2z = 3 1}[_1(14 \/(cosq4 z)? — (cosg2 2)4. (g-Doubley)
q
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Eliminating sin, (as opposed to sing2) and cos, from (g-Double)?, (¢-Doubles), and (g-Doubles)?, and then
writing ¢ for ¢2, we find
cos, 2z = (cos, 2)* — (sing 2)*. (g-Doubles)

Since this result involves the same power of ¢ throughout, it is not surprising to learn that it restates a
familiar formula of ¢ theory.

We can now attack

sin 3z = 3(cos 2)? sin z — (sin 2)?,

which will come out different from (g-Triple) because there is no direct equivalent of cos? + sin? = 1. In fact,

Iy

sing 3z = (cosys 2)? sings z — (sings 2). (g-Triples)

q3

Plugging (Root2) into (g-Double) and squaring, we find an unexpected relationship among the ITgn:

112 % .
=—4 — & (Pi12.4)
Hq4 HqZ Hq4

Digression on Computing 7w

My colleague Eugene Salamin points out that (Pij o) provides a quadratically convergent method for
computing 7 (or (other) logarithms). Solve (Pi o 4) for II, and write ¢> " for ¢:

Hq21fn 4Hq22—n
quin - Hquin II 22-n + II »1-m

q q
or
1 Gp—1 Gp—2
On = Qn_14/ = — ],
" " 1\/2 (an—2 + an—1
if
o 2—n 7Tq2—n
i = e = G
Then -
nh—>rgoan - _2]nq.

If g is chosen to be 278, say, then ao and a; can be immediately written down in binary:

8 16 24
——

ap = 1(1.00...0100...0100...01...)2,

4 8 12
et e Ve

a1 = £(1.000100...0100...01...)3.

Empirically, one then finds
2n+.59“‘

2(In256)a, =7+ 10~

End of 7m Digression

Relations even stranger than (Pi; 4) arise from combining (Root2) and the (g-Triple)s. In fact, it seems
that for any three (or more) distinct integers n, {II;» } satisfy homogeneous polynomials. One can narrow the
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search for such relationships by noting that the factor of ¢ in II;» will require that in each term of the form
Mge g Mge - .., the sum  (mod 4) of a+b+c+--- must be the same. One then proposes a polynomial with
undetermined coefficients, Taylor expands it, and attempts to solve the linear system resulting from equating
powers of ¢. (To reject unsolvable systems, you can first take an approximate Wronskian of the proposed
set of polynomial terms to see if they seem linearly interdependent. In MACSYMA, one may form a matrix
of the first few derivatives of the Taylor expansions, and then simply see if the Determinant = 0 + ....
Alternatively, use numerical approximations with various values of ¢.) Here are some typical identities so
discovered (but not proved!):

;> +2T0, [gs = ITg g3 +3 1Mo
Hq2 H33 _ qu — Hqs
Mg T2 g2 +3T0ge
s +310, g = /Tl g (Mg +31Ly0)
Vg e (I —3105) = /Tlg s (T2 +3110s)

g2 H33 = Ige (Ilg2 — Hq5)3 (Hq2 +3 Hqﬁ)

(
Igo H?z = Il (Hq2 - Hqﬁ) (Hq2 +3 Hq6)3
g ITgs (H3 +4 H§2)2 = ng (Hq + Hq3) (Hq +3 Hq3)3
Ty g (112 £411%)° = 1126 (I, F 1) (1 £311,)

Hq2 H;ls (16 H;ll[) — ng (5 qu — HqQ) (qu — qu)S

o) =
g0 T4 (1611 — 112) = 1122 (51410 — T, )° (T2 — Tgo0)
I Tl (1610 — 112)% = 1% (5104 —11,)° (I — 1)
Tl Tgs (161140 — 11%)° = Ik (5115 — 11) (s — 11,)°
T, Tyt (s — 10y (5T —Iy) = (I, Tgro — g2 Tgs) .
The + signs indicate that there are two ways to write the given equation (e.g. (v & y)(z Fy) = 2), rather

than that there are two equations. Thus one cannot use the above results (nor any others known to this
writer) to establish an algebraic relation involving only two of the ITgn.

What about sin, §? Plug z = % into (¢-Triplez) and (g-Doubles), the latter becoming
cosy 5 = (cos, %)4 — (sing %)4

7r)4.

= (sing %)4 — (cosq 3

Writing ¢ for ¢ and eliminating the sings %, we find

) 1—|—q3”
T\3 T™\3

Cosgs 7)° = (sings §)° = ——5—

( q 3) ( q 6) <Hq) . 1:[ (1+qm)
g2

us
3

the latter following from z = % in (SinProdl). Eliminating instead the cos,s Z would have lead to

6
3
2
1148

9

(sings £)® = (cosgs 5)° =

e H )’(1+¢°")°
1 - q3”) ’
n>1




the latter following from z = % in (SinProdl1).
Addition Formulas

Might it be possible to generalize (¢-Doubley) into something like
sing(z +y) = Aq(x,y) singz x cosge y + By(x,y) cosgz x sing y?
Because of the qz2 factor in sing 2, A, and B, must contain a factor of q’(I*y)Z. This suggests
sing(z 4+ y) = Ag(z — y) sing x cosgz y + By(x — y) cosgz xsinge y.
Substituting 2 < = + 5, y < y + § reveals that Ay(x —y) = By(x — y). Letting y = 2 — ¢ renders A,

independent of x, which is empirically confirmed by solving for A,(¢) and noting the absence of = from the
terms of the Taylor series. By (¢-Doubles), we know that

II
A =1 1
(0 = 55 (Clue)
Choosing instead y = x — 5 and comparing with (g-Doubles) reveals
AQ<%) =1,
and similar arguments show that
Ayt +7m) = Ay(t).
The evanescent appearance of II, in (Clue) should recollect (Small z), and we quickly discover that
A (t) = s.inqt
Singz ¢
meets all requirements. Extensive Taylor expansion then reassures us that indeed
: sing(z —y) . ;
sing(z + y) = ———= (sing x cos,2 y + cosgz T sing y) . (Add)

sing (z —y)

Shifting y < y + 5 gives the corresponding cosine formula. It is interesting that no obvious applications of
(Add) yield either the (Triple) angle formulas, or the quintuple formula in the summary tables at the end of
this paper.

Mysteries
What is the sing(x + y + 2z) addition formula generalizing (¢-Triples)?
Are there sinh, and coshy, perhaps corresponding to ¥; and ¥3?
Is there a g-generalization of z — ‘g—? =+ -+ equal to sing x7
Is there a g-exponential and a g-deMoivre’s theorem that would simplify everything?
Bibliographic Notes

In “A Basic-sine and cosine with symbolical solutions of certain differential equations”, Proceedings of the
Edinburgh Mathematical Society XXII (1904), 28-39, The Rev. Dr. F. H. Jackson ¢-generalizes sinz :=

T — g—? + -+ to get a function not obviously related to our sin,.
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In “Pseudo-periodic Functions Analogous to the Circular Functions”, The Messenger of Mathematics 34
(1905), 32-39, Jackson defines

when converted to our notation.

Then, in “The Basic Gamma-Function and the Elliptic Functions”, Proceedings of the Royal Society of
London SERIES A 76 (1905), 127-144 he defines

Sp(x,w) = p 2 (&9 gin

But for neither of these S, does he offer so much as a double angle formula.

Whittaker and Watson’s Modern Analysis (1902-1978), 462-490 is an informative introduction to 9 functions.
It provides powerful methods for formula verification, if not discovery.
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Collected Definitions and Identities

- 1—q" l-gql-¢ 1-¢ .
| — _ z “_» . _
zlg:=(1—gq) gl_qn+z g 1_q—qfactorlal(z)
P qZ(Z—l)ﬂ'q _ q(2_1/2)2 H (1 _ q2n—2z)(1 - q2n+2z—2) _ 'qzz Al (’LZ In q)
q (z =g (=2)!p b (1—g2n—1)2 04
9 q2n
=q" Te(g " — ") H (1 — (¢ = ¢) - 2n)2> = —singm(z + 1)
n>1 q
3 q2n
=" | (@7 =)= (a7 =a)*) (ErOr
n>1 q
2
Ol B Dheer-
n>1 (1 - q2”)2 n>1 (1 o q2”)4
+ (qu qz)5 = =
2
1,2
Z (—1)ngtn==t2) . in
= 2T — q(2—1/2)2 H qz—1/2 1—g?n2 _ _mnqﬁ (Z + m)
B n? - _ 2n—1 2miz—72/In ’
Z (=9) [n| < oo 1-¢q e /Ing
n>-—oo
e Ue@rEN @) iiing)
cosy Tz : =sing (5 —2) = ¢ 11 =T =gq 9
2n—1
Z2 —Z z q
=a ]] (1—(q —q )227112>
n>1 (1 —q )
2n—1
2 - q
=¢ | 1-(¢"-¢) 2n—1)2
A=)
2
q2n71 B Z q4n72
A& “ Ty
(@7 =) —— T -
2
Z (_1)nq(n—z) -
_ n>—o _ qzz H - 1— q2n72271 _ COsq T (z + m)
> (—g)™ ml<oo 1T g1 e2miz—m?/Ing
n>-—oo
- g iy S T2 1 (_%)!32 1 (1—¢*)? g-Wallis product
= = 1m = q = q =
Tl g g 1—¢? 1L (1 —gnt)? 1—gq
, ST (n+1)gte)’
Va3 95(0,47)  nS"o
S SR Y L I L (G O
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Then
08y 22 = (cos,2 2)% — (sing: 2)?

= (cosy 2)* — (sing 2)* = cos 22 H (sinzz,n z+ coszz,n z)
n>0

. m, .
Sing 2z = —— sing2 20842 2
1,2
1 1
=5 1}[1;4 \/(sinq4 z)? — (sing2 2)* = 3 ;[q‘i \/(COSq4 2)2 — (cos,e 2)4

sing 3z = 1?—q(cosqa 2)?sings z — (sings 2)*

qS

1 1
=3 1?:9 sings z — (1 + 3 ;I_[q ) (sings 2)*

q9

I3 IT;
sing 5z = 1%[_I—q(cosqs 2)*sings 2 — \/q _o—t 51l (cosys 2)%(sings 2)® + (sings 2)°

3 2
q° Hqs Hqs Hq5
2n—2z—1
COS,2 TZ . 2 14+¢
CCSq Mzt = T = smgz gz + cos?, gz =q* Zﬁ,
COSq T2 a 1+ q*n~
3 2n—2z
sing2 Tz 2 144¢q
o - 1y) _ SMg _ (2—1/2 2—1/2
ssngmz i = cesq + (m(z £ 3)) = —— =12 Hq / —
sing 2 1+¢
ssnpz=ces;z=1, (2220 (mod)),
. Sing2 x cos,2 Y + COS,2 T Sing2 y
sing(z +y) = —4 a 4 Loy
ssng(z — )
COS,2 T COS,2 Y — Singe xsinge y
cosy(z +y) = —2 4 1 =
cesq(z —y)
sing(z + y) sing (x — y) = sing x cos; y — cos; xsing y

sing(a + b+ x + y) cesq(x — y) sing(a — b) = sing(a + ) sing(a + y) cesqg (b + x) cesq(b + y)
— sing (b + z) sing (b + y) ccsy(a + x) cesy(a + y),

. JE
) sshg a; sing ¢; sing(¢; + a; — a;)
sin, E ¢ | = H — E ssng | a; — E ¢ H ,
ssng(a; — ¢;) 5, ssnga;

sing(a; — a;
1<j<n 1<j<n ‘J( v J)

. ) . ) 7 (cj +a; )
B sing a; sing¢; . sing(c; + a; — a;
= - - sing | a; — ¢; )
sing(a; — ¢;) (5=, singa;

1<ien sing(a; — a;)
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Then ¢; :==a; —b;, a1 +---+ap = by +---+ b, in the latter gives

7 sing(a; — b;)

Z sing (a; — b;) — =2 —0.
1<i<n 1<j<n sing(a; — a;)
E.g., when n:=4,c¢; := (—)I7/2,a1 := w, a2 == x,a3 := y, a4 := z,
cosy(z — x) cosg(z — w) cosy(x — y) sing (y — w) sing (y — 2) sing(z — w)
+sing(z — x) sing(x — w) cosq(z — ) cosq(y — w) cosg(y — 2) sing(z — w)
4 cosy(z — @) sing (x — w) sing (z — y) sing (y — w) cosy (y — 2) cosy(z — w)
+sing(z — ) cosy(x — w) sing(x — y) cosy (y — w) sing (y — z) cosq(z —w) =0

While if ¢ — 1 in the ssn-ccs version,

sin(c; + a; — a )

sin( Z > Z sin ¢; H sin(a; —aj)

1<i<n 1<i<n 1<j<n

sings 9  COSu X, 5 Sinpy 9 .
- cos =+ S = Ccos + S

singe a:( aY) COSg2 a:( ing y) singe y( a?) COS42 y( ing )

sings x 9  COSg T, o Singy 9  COSgsY 9
on, (cosqy)” + 7(305(1 . (sing ) i, (cosq x)* + — (sing x)

sings @ sing (2x — y) — sings ysing(2y — x) = sings (x — y) sing(z + y)

sings 2 sing (2y — o) — sings ysing(2x — y) = cos,s y cosy (22 — y) — cosys  cosy(2y — )

21
sin; 0=- :q q
cos’”_0 9] 2n-1
. . . Va nq q
Fixthis! cos) 0 = (sin}, 0)* + 5 = 2 1—-4Ing § -2

n>1

(sinj 2)* = sing zsin}, z + (sinj 0)*(cos, 2)* — cos 0 (sing 2)*

L, squ z+ sm Ocosg2 2
sing z =
QSan z
I EDY
)" =)
1- 1—qgm
n>1 ( q n>1 n>1 q

14



n 2n 4
q q 1 [ 10 2
7 N9 _2 —_— = — _1 _ 5
Z (1 — qn)2 Z (1—¢")? 24 <H§2 ) + 3 IT;,

n>1 n>1
n n 2 2 )2
_ v Z ¢ _ (1T +3117s) 1
S-g? T (-gn)? T 1200 12
n an 4
q q 1 (1 >
>t i =g ( 1
_ qn)2 _ 44n)\2 2
n>1 (1—gqm) et (1—qg*) 8 2
qn q57l 1 2 9 Hq Hq5
s =5 ) s = o | (I 210 Igs +5 105 —24+5-—L 1
,;1 (1—qn)? g (1—¢™)?2 6 (11 qllq 4) My 1,
5 2 03" g I L1 (1‘[33 1)
n>1 (1—¢*)2 o1 (1—g'®m)2 11, 3 \Igp
2n—1 4n—2 2 1 2n—1
(l—q 2n—1)2 _22(1_(1 4n—2)2 =Tl = ( 711_ 23,2
n21 ! = ¢ n>1 q
2n—1 6n—3
Z q2—12*32 q6_32
w A=) el Gl q
Hg:" o Hq3
q2n—1 ~ Z q10n—5 H35 16Hq10
2n—1)2 10n—5)2
S e (gt T W1,
H2 o 11 II,.5 - HB H2 I
q° q — 4 q P ] e
IIgs I1,
Z q2n—1 q1871—9
1—g2n1)2 1 — gl8n—9)2
n21( q ) 2n>1( q ) <Hq+3> <Hq) 3Hq+3<1'[q)2
I q° Iy 0 I,
4 q4n—2 q2n—1 n3qn *
II, =6 + _
q = (1—g2n1)i Tgl (1— g2n1)2 WZM 1— g
ng*" Z (2n — 1)t Z Bs(n) ¢t
n — g2 1_ An-2
"211+q n>1 I=q n>1 3 1—g¢q

Baln) . (ZD=z)n 92 4 92 oy (n — 1)2

Implying
2n—1 8n—4 4 4
q q 1 (1 Hq2> , ,
Z_4Z=< - =% +211%
_ 42n—1)\2 — 8n—4\2 3 5 q p
n>1 (1-4q ) n>1 (I—gq ) 8 qu Hq4
q2n—1 q12n—6 ) ,
2 (1—g1)2 6> 1= qzn—oy ~ IT,2 +2 1042 Hge = 11, 1Tz +3Te
n>1 n>1

*I.e., the number of ways to express n—1 as the sum of 8 triangular numbers equals n® times the sum of the cubes of the

reciprocals of the odd divisors of n.

15



CcoS,2 = =sing T =
9% 7 9% 7 1,
. 1 (1+¢)°
(cosgz 3)P = (sing 2)° = ———— =¢ —
(Hq> -1 n>1 (1+4¢")
I3
)
. ” . L3 1 (1 _ q2n)3<1 + q3n)3
(sings §)3 = (cosgs 6)3 == (1 —¢g3n)3

112 — T, Tgs +2T1% + T, \/ng ~211, Tlgs +5T12

T\
35 =) = Ilg5
(cosgs ) q 2(T, — I15)°

2 2
_ 1y, 12
ITga g2 H34

25 +310g [ = /Tl e (TIg +3Tlyo)
VT (I -312) = I T (11 +311%)
g2 Iy =

Igo T, =

T, s (112 £411%)% =

I
i
|
I, T (112 +411%)° = 11
Mg [gs (16 g0 — g5 ) = 11
Mg I (16T —10,) =11
I, T (1611 —114)° = 11
i

T, Ty (16114 —114)° =

Iz Ig10 (Hq5 - HQ) (5 Igs — HQ) = (Hq g0 — g2 Hq5)2

Hq2 Hgs qu — Hqc
Mg I, g2 +3T0ge

The 1, 3,9 case can be rewritten




+1:(Hq
I

q5

1I
+1={,/ q+31/ -9
( go Z>: 1_q2n1 ;(1

= (Ig +310)
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n>1

3(IIq ILge + 11

277, 1 -9 Z (1
n>1

10n—5
q

— qun—5)2

18n—9
q

_ q18n79)2

2 10, Ty (11, —310,0)°

I Hq I, Mg



