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No mathematician can be a complete mathematician unless he is also
something of a poet. - K.Weierstrass [55]

In the magical world of modular forms
Double series of theta functions transforms
To Fourier expansions of functions of q.
Some gaps in the theory left plenty to do.

So in level seven I fossicked around
Two in�nite integer sequences found
In functions with coe�cients polynomial
But, I could not �nd a form binomial.

Recurrence relations were produced
From this the theorems were deduced.
The proofs I have will be revealed
By reading this thesis in which they're concealed.

Lynette O'Brien (6/7/16)
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ABSTRACT

Integer sequences resulting from recurrence relations with polynomial coe�cients are
rare. Two new integer sequences have been discovered and are the main result in this
thesis. They consist of a three-term quadratic recurrence

(n+ 1)2c7(n+ 1) = (26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1)

with initial conditions c7(−1) = 0 and c7(0) = 1, and a �ve-term quartic recurrence

(n+ 1)4u7(n+ 1) = −Pu7(n)−Qu7(n− 1)−Ru7(n− 2)− Su7(n− 3)

where

P = 26n4 + 52n3 + 58n2 + 32n+ 7,

Q = 267n4 + 268n2 + 18,

R = 1274n4 − 2548n3 + 2842n2 − 1568n+ 343,

S = 2401(n− 1)4

with initial conditions u7(0) = 1 and u7(−1) = u7(−2) = u7(−3) = 0. The experi-
mental procedure used in their discovery utilizes the mathematical software Maple.
Proofs are given that rely on the theory of modular forms for level 7, Ramanujan's
Eisenstein series, theta functions and Euler products. Di�erential equations associ-
ated with theta functions are solved to reveal these recurrence relations. Interesting
properties are investigated including an analogue of Clausen's identity, asymptotic
behaviour of the sequences and �nally two conjectures for congruence properties are
given.
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PREFACE

This thesis is the original work of the author Lynette A. O'Brien. It consists of
ten chapters. The introductory chapter gives a brief outline of the main results and
the motivation. In Chapter 2 we give a brief historical overview of modular forms
and some background theory. In Chapters 3�5 we give de�nitions, derivatives, dif-
ferential equations and proofs. Our main results are revealed in Chapter 6. Then
in Chapters 7�9 we look at consequences of our �ndings. First we discuss an ana-
logue to Clausen's identity for the square of the hypergeometric series, then look at
asymptotics and congruences. We �nish with conclusions and suggestions for further
work.
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Chapter 1

Introduction

Sequences of integers have been known for centuries. A famous sequence studied by
Fibonacci in the middle ages is generated by a recurrence relation where the next
term depends on the previous two terms:

Fn+1 = Fn + Fn−1.

To get the sequence started the �rst two terms need to be speci�ed. So we begin with
F−1 = 0 and F0 = 1. Then the integer sequence begins

{1, 1, 2, 3, 5, 8, 13, 21, 34, . . .}.

This is a prototype example. Another sequence which is similar in that each term
depends on the previous terms is the Apéry sequence, however, the coe�cients are
cubic polynomials. The recurrence relation is given by

(n+ 1)3an+1 = (2n+ 1)(17n2 + 17n+ 5)an − n3an−1

with initial conditions a−1 = 0 and a0 = 1. The terms in the Apéry sequence may be
given by a binomial sum

an =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

. (1.1)

These terms, called the Apéry numbers, are also integers although this is not obvious
from the recurrence relation. The �rst few Apéry numbers are as follows:

{1, 5, 73, 1445, 33001, . . .}.

The Apéry numbers were used to prove ζ(3) is irrational where

ζ(s) =
∞∑
n=1

1

ns
, Re(s) > 1

is the Riemann zeta function. This is well explained in the entertaining article by van
der Poorten in [58].
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Zagier [66] was motivated by Apéry's example to do a computer search for sequences
of the form

(n+ 1)2sn+1 = (an2 + an+ b)sn − cn2sn−1, s−1 = 0, s0 = 1.

There are only six known tuples (a, b, c), together with the initial conditions
a−1 = 0, a0 = 1, that give non trivial integral solutions. That is they are neither
terminating nor polynomial. They correspond to

(a, b, c) = (11, 3,−1), (−17, 6, 72), (10, 3, 9), (7, 2,−8), (12, 4, 32), (−9,−3, 27).

Zagier also conjectured that that was all there were.

The major result of my research reported in this thesis is the discovery of two se-
quences similar to those found by Zagier. They have polynomial coe�cients that
result in integer sequences. Like the Apéry numbers the �rst sequence is a three-term
recurrence relation but this time the polynomials are quadratic and of a di�erent form
to Zagier's six examples. The �rst sequence is de�ned by the recurrence relation

(n+ 1)2c7(n+ 1) = (26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1) (1.2)

with initial conditions c7(−1) = 0 and c7(0) = 1. The sequence occurs in the power
series expansion of

z7 =
∞∑
n=0

c7(n)Xn

where z is de�ned as a theta series

z7 = z7(q) =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+2n2

, |q| < 1 (1.3)

and X is given in terms of eta quotients by

X7 =
w7

1 + 13w7 + 49w2
7

(1.4)

where

w7 = q

∞∏
j=1

(1− q7j)4

(1− qj)4
. (1.5)

The second new sequence is de�ned by a �ve-term quartic recurrence relation

(n+ 1)4u7(n+ 1) = −Pu7(n)−Qu7(n− 1)−Ru7(n− 2)− Su7(n− 3)

2



where

P = 26n4 + 52n3 + 58n2 + 32n+ 7,

Q = 267n4 + 268n2 + 18,

R = 1274n4 − 2548n3 + 2842n2 − 1568n+ 343,

S = 2401(n− 1)4

with initial conditions u7(0) = 1 and u7(−1) = u7(−2) = u7(−3) = 0.
This sequence occurs in the power series expansion of

y7 =
∞∑
n=0

u7(n)wn7

where

y7 =
∞∏
j=1

(1− qj)7

(1− q7j)

and

w7 = q
∞∏
j=1

(1− q7j)4

(1− qj)4
.

The properties of these sequences are the subject of this thesis.

This thesis was motivated by questions that arose from recent work on a sequence
{t7(n)} that was discovered by my supervisor, S. Cooper in 2012 [24]. He performed
a computer search much like Zagier's. One of three sequences he found at that time
was:

(n+ 1)3t7(n+ 1) = (2n+ 1)(13n2 + 13n+ 4)t7(n) + 3n(9n2 − 1)t7(n− 1) (1.6)

with one initial condition t7(0) = 1 which is su�cient in this case. This is a three
term cubic recurrence relation where the coe�cients are all integers. The sequence
{t7(n)} occurs in the expansion of

z27 =
∞∑
n=0

t7(n)Xn
7

where z7 and X7 are given by (1.3) and (1.4).
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A binomial sum was later found by W. Zudilin [24, p. 171] for this sequence as
follows:

t7(n) =
n∑
k=0

(
n

k

)2(
2k

n

)(
n+ k

k

)
. (1.7)

We are now able to automate the process of �nding a recurrence relation if we know
the binomial sum. In the Maple computer software we use the sumtools package
and the command sumrecursion which produces a recurrence relation from sums of
binomial coe�cients. Using the example of Equation (1.7) as follows:

> with(sumtools):

> sumrecursion(binomial(n,k)^2*binomial(2*k,n)

*binomial(k+n,k),k,t(n));

the output is the recurrence relation

−3 (n− 1) (3n− 4) (3n− 2) tn−2 − (2n− 1)
(
13n2 − 13n+ 4

)
tn−1 + tnn

3

that is equal to zero. Unfortunately there is no mathematical technique, hence no
algorithm yet to produce a binomial sum given a recurrence relation.

Another aspect of the project was to see if there was an analogue to Clausen's identity.
Clausen was working nearly 200 years ago on special functions using hypergeometric
series; see (6.1) for a de�nition. He found a very useful identity where he had a series
which was the square of another series, that is{

2F1

(
a, b

a+ b+ 1
2

;x

)}2

= 3F2

(
2a, 2b, a+ b

2a+ 2b, a+ b+ 1
2

;x

)
.

We wanted to see if there is an analogue of Clausen's identity. We took the two power
series formed from the recurrence relation for {c7(n)} Equation (1.2) and {t7(n)}
Equation (1.6). We found if we square one we get the other(

∞∑
n=0

c7(n)Xn

)2

=
∞∑
n=0

t7(n)Xn.

If we take any sequence de�ned by a recurrence relation and try to square it, in gen-
eral we are not going to get anything nice. So this is a striking result for our new
sequence and hence shows we do have a Clausen type analogue.
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We look at some properties of the sequences. We look at asymptotics, that is we
are looking for an approximation for a term in the sequence for a large n. The
asymptotic formula for the sequence in Equation (1.2) is given by

cn ∼ Cn−
3
2 27n as n→∞

where we estimate the constant C to be

C ≈ 0.095522305268126714651307910787029 . . . .

We also investigate congruences in this thesis. About a hundred and �fty years ago
Edouard Lucas [48] found a congruence satis�ed by the binomial coe�cients. Suppose
p is a prime, n and k are non negative integers with base p representations given by

n = n0 + n1p+ n2p
2 + · · ·+ nrp

r

and

k = k0 + k1p+ k2p
2 + · · ·+ krp

r.

Then (
n

k

)
≡
(
n0

k0

)(
n1

k1

)
· · ·
(
nr
kr

)
(mod p).

Gessel in [33] has shown that for any prime p and any integer n the Apéry sequence
in Equation (1.1) satis�es the property

an ≡ an0an1 . . . anr (mod p).

We thought it would be interesting to see if sequence {c7(n)} in Equation (1.2) had
any such congruent property. A check was done using Maple and we were excited to
�nd that in half of the �rst two hundred primes a Lucas-type congruence holds. We
were able to make the conjecture that

cn ≡ cn0cn1 . . . cnr (mod p)

holds if and only if p is a prime congruent to 0, 1, 2 or 4, modulo 7. The main reason
we haven't been able to prove the conjecture yet is that there is no known binomial
sum for {c7(n)}.
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Chapter 2

Background

2.1 Modular forms

The functions we are studying in this thesis are from a class of functions called
modular forms which are interesting analytic functions de�ned on the upper half of
the complex plane. They have been described by Zagier [67] as beautiful and magical
and have a lot of symmetry and nice analytical properties. Modular forms also have
a Fourier expansion where the coe�cients are often interesting sequences. A modular
form constructed in one way can be equal to a modular form constructed in another
way which may lead to interesting identities. A series for which the exponents of
q, a complex variable, are quadratic expressions are called theta functions. Theta
functions are examples of modular forms and are introduced in the next section. In
this chapter we give a brief historical overview of modular forms, look at the relevant
theory of modular groups, modular forms and their transformation properties.

2.2 Historical overview of modular forms

Theta functions were �rst used by Jakob Bernoulli and are recorded in his book,
Ars Conjectandi, published posthumously in 1713; see [12, p. 55]. The theta func-
tions were used as answers to questions in probability that arose when the Dutch
physicist, Christiaan Huygens around 1657, posed a number of problems. A general-
ization of one of these problems is analysed in Hald's book [34, p. 185] as follows:

Problem 1

Players A and B play with a die on the condition that he who �rst throws

an ace wins. Player A throws once, then player B throws once; thereafter

A throws two times in succession and then B throws two times; then A

throws three times and B also three times,and so on. What is the ratio of

their chances?

Bernoulli gave the probability, P , of winning as the in�nite series

P = 1 + q2 + q6 + q12 + q20 + · · · − q − q4 − q9 − q16 − · · · . (2.1)

We notice the exponents {2, 6, 12, 20, . . .} are numbers of the form n(n + 1) and the
exponents {1, 4, 9, 16, . . .} are square numbers.

6



We can draw a tree diagram and with each roll of the die either we get a 1 with
probability 1

6
and the game ends, or not a 1 with probability 5

6
and the game remains

alive. Now player A can only win on the �rst roll of the die or the third or fourth roll
or seventh, eighth or ninth rolls and so on. To �nd who wins we need to add up the
probabilities for each player. Written mathematically

P =

(
1

6

)
+

(
5

6

)2(
1

6

)
+

(
5

6

)3(
1

6

)
+

(
5

6

)6(
1

6

)
+

(
5

6

)7(
1

6

)
+

(
5

6

)8(
1

6

)
+ · · · .

Now generalizing, let q = 5
6
so that 1 − q = 1

6
. Substituting these in the above

equation we get

P = (1− q) + q2(1− q) + q3(1− q) + q6(1− q) + q7(1− q) + q8(1− q) + · · · .

If we now take a factor out and group the remaining terms we can begin to see a
pattern

P = (1− q)(1 + (q2 + q3) + (q6 + q7 + q8) + (q12 + q13 + q14 + q15) + · · · ).

Each of these groups can be regarded as a geometric series

P = (1− q)
(

1− q
1− q

+ q2
(1− q2)

1− q
+ q6

(1− q3)
1− q

+ q12
(1− q4)

1− q
+ · · ·

)
.

We can cancel the factors 1− q to get

P = q0(1− q) + q2(1− q2) + q6(1− q3) + q12(1− q4) + · · · ,

that is

P =
∞∑
n=0

qn(n+1)(1− qn+1).

Expanding the series and rearranging gives us

∞∑
n=0

qn(n+1) −
∞∑
n=0

q(n+1)2 = 1 + q2 + q6 + q12 · · · − q − q4 − q9 − q16 · · ·

as set out in Hald's work. Bernoulli did not use the modern q notation but rather
powers of m as found in his original work [12] in the quotation below:
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Theta functions with two variables q and z were studied by Carl Jacobi in the 19th

century; see [41]. He gave us a very useful tool known as Jacobi's triple product
identity which takes sums to products. If |q| < 1 and z 6= 0, then

∞∑
j=−∞

qj
2

zj =
∞∏
j=1

(1 + zq2j−1)(1 + z−1q2j−1)(1− q2j). (2.2)

Proofs can be found in [1, p. 497], [5, p. 319] and [35, p. 282].
Another useful tool to manipulate in�nite products is known as Euler's product iden-
tity. If |q| < 1, then

∞∏
j=1

(1 + qj) =
∞∏
j=1

1

(1− q2j−1)
. (2.3)

This is proved by multiplying numerator and denominator of the left hand side by
(1− qj) to give

∞∏
j=1

(1 + qj) =
∞∏
j=1

(1 + qj)
(1− qj)
(1− qj)

.
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Expanding the numerator and taking the di�erence of squares we obtain

∞∏
j=1

(1 + qj) =
∞∏
j=1

(1− q2j)
(1− qj)

.

Then separating the denominator into even and odd terms

∞∏
j=1

(1 + qj) =
∞∏
j=1

(1− q2j)
(1− q2j)(1− q2j−1)

.

Cancelling completes the proof.

Another useful identity is

∞∏
j=1

(1− (−q)j) =
∞∏
j=1

(1− q2j)3

(1− qj)(1− q4j)
. (2.4)

To prove this we can separate the left hand side of (2.4) into even and odd terms and
multiply the numerator and denominator by (1 + q2j) to obtain

∞∏
j=1

(1− (−q)j) =
∞∏
j=1

(1− q2j)(1 + q2j−1)
(1 + q2j)

(1 + q2j)

=
∞∏
j=1

(1− q2j)(1 + qj)
1

(1 + q2j)
.

Now multiply the numerator and denominator by (1− qj)(1− q2j) to give

∞∏
j=1

(1− (−q)j) =
∞∏
j=1

(1− q2j) (1 + qj)

(1 + q2j)

(1− qj)
(1− qj)

(1− q2j)
(1− q2j)

.

Hence by di�erence of squares and simplifying we complete the proof.

If we de�ne the function E by

E(q) =
∞∏
j=1

(1− qj), (2.5)

then (2.4) can be written as

E(−q) =
E3(q2)

E(q)E(q4)
. (2.6)
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Early in the 20th century Srinivasa Ramanujan [6, p. 36] developed several special
functions of complex variables. They are known as Ramanujan's theta functions ϕ(q)
and ψ(q) and are de�ned by

ϕ(q) =
∞∑

j=−∞

qj
2

= 1 + 2q + 2q4 + 2q9 + 2q16 + 2q25 · · ·

and

ψ(q) =
∞∑
j=0

qj(j+1)/2 = 1 + q + q3 + q6 + q10 + q15 + · · · .

To obtain an in�nite product for ϕ(q) we substitute z = 1 into (2.2) to obtain

ϕ(q) =
∞∑

j=−∞

qj
2

=
∞∏
j=1

(1 + q2j−1)2(1− q2j). (2.7)

To derive an in�nite product formula for ψ(q) we start by replacing q with q
1
2 and z

with q
1
2 in (2.2) thus

∞∑
j=−∞

qj(j+1)/2 =
∞∏
j=1

(1 + qj)(1 + qj−1)(1− qj)

= 2
∞∏
j=1

(1 + qj)2(1− qj). (2.8)

The series side is summed over all integers. To obtain a sum that is over the non-
negative integers, write

∞∑
j=−∞

qj(j+1)/2 =
∞∑
j=0

qj(j+1)/2 +
−∞∑
j=−1

qj(j+1)/2.

In the second sum on the right hand side we replace j with −1− k. Thus
∞∑

j=−∞

qj(j+1)/2 =
∞∑
j=0

qj(j+1)/2 +
∞∑
k=0

qk(k+1)/2 = 2
∞∑
k=0

qk(k+1)/2.

On the product side of (2.8) multiply numerator and denominator by (1 − qj) to
obtain

2
∞∏
j=1

(1 + qj)2(1− qj)2

1− qj
= 2

∞∏
j=1

(1− q2j)2

1− qj
.

10



So we have a series and in�nite product representation for ψ as

ψ(q) =
∞∑
j=0

qj(j+1)/2 =
∞∏
j=1

(1− q2j)2

(1− qj)
. (2.9)

It is interesting to note that the solution to the Bernoulli problem in Equation (2.1)
can be expressed as

P = ψ(q2)− 1

2
ϕ(q) +

1

2
.

Another identity we require is obtained by manipulating Jacobi's triple product so

∞∑
j=−∞

(−1)jqj(3j−1)/2 =
∞∏
j=1

(1− qj). (2.10)

To prove this identity we replace q with q
3
2 then take z = −q 1

2 on series side of
Equation (2.2). We can replace j with −j since we are summing over all integers so

∞∑
j=−∞

(−1)jqj(3j−1)/2 =
∞∏
j=1

(1− q3j−1)(1− q3j−2)(1− q3j)

=
∞∏
j=1

(1− qj).

Another form of Equation (2.10) is obtained by replacing j with −j on the series side
of Equation (2.10) and multiplying both sides by q

1
24 to complete the square thus

∞∑
j=−∞

(−1)jq(6j+1)2/24 = q
1
24

∞∏
j=1

(1− qj). (2.11)

The series side of (2.11) gives a Fourier expansion, that is a sum of complex expo-
nentials where τ is a complex number with Im(τ) > 0 and q = e2πiτ . The product on
the right hand side is called Dedekind's eta function, de�ned by

η(τ) = q
1
24

∞∏
j=1

(1− qj). (2.12)

More generally for any positive integer m let ηm = η(mτ) be de�ned by

ηm = q
m
24

∞∏
j=1

(1− qmj). (2.13)
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The Dedekind eta function was �rst reported in an 1887 journal article by Richard
Dedekind [29, p. 285]. Srinivasa Ramanujan used Dedekind's eta function to develop
a series called Ramanujan's Eisenstein series. He used logarithmic di�erentiation to
obtain

P = q
d

dq
log(q

∞∏
n=1

(1− qn)24)

= 1− 24
∞∑
n=1

nqn

1− qn
. (2.14)

This function P is one of three functions given by Ramanujan. The other two, Q and
R, are de�ned as

Q = 1 + 240
∞∑
n=1

n3qn

1− qn
(2.15)

and

R = 1− 504
∞∑
n=1

n5qn

1− qn
. (2.16)

They satisfy a system of three di�erential equations as described by Ramanujan
in [53]. The following identity shows the relationship between Ramanujan's Eisenstein
series and Dedekind's eta function with

Q3 −R2 = 1728q
∞∏
j=1

(1− qj)24.

Ramanujan's ϕ function can be expressed in terms of Dedekind's eta function by

ϕ(q) =
η52
η21η

2
4

.

This is obtained by replacing q with −q in Equation (2.7). The result is

ϕ(−q) =
∞∏
j=1

(1− q2j−1)2(1− q2j). (2.17)

Multiply numerator and denominator of (2.17) by (1− q2j) to get

ϕ(−q) =
∞∏
j=1

(1− q2j−1)2(1− q2j)2 1

(1− q2j)

12



and simplify using (2.5) to obtain

ϕ(−q) =
∞∏
j=1

(1− qj)2

(1− q2j)
=

(E(q))2

E(q2)
.

Replacing q with −q again, we �nd

ϕ(q) =
(E(−q))2

E(q2)

and using (2.6) we obtain

ϕ(q) =

(
E3(q2)

E(q)E(q4)

)2
1

E(q2)
=

E5(q2)

E2(q)E2(q4)
=
∞∏
j=1

(1− q2j)5

(1− qj)2(1− q4j)2
.

Finally, using (2.13) gives us Ramanujan's ϕ(q) in terms of an in�nite series and also
as a product of eta functions

ϕ(q) =
∞∑

j=−∞

qj
2

=
∞∏
j=1

(1− q2j)5

(1− qj)2(1− q4j)2
=

η52
η21η

2
4

.

We can also write ψ(q) found in (2.9) in terms of eta functions, however, we need a
q

1
8 to balance the equation so

q
1
8ψ(q) =

∞∑
j=0

q(2j+1)2/8 = q
1
8

∞∏
j=1

(1− q2j)2

(1− qj)
=
η22
η1
.

Gotthold Eisenstein (1823-1852) developed an in�nite series known as Eisenstein se-
ries, an example of modular forms, that we de�ne as

Gk = −Bk

2k
+
∞∑
j=1

jk−1qj

1− qj

where Bk are the Bernoulli numbers de�ned by

x

ex − 1
=
∞∑
k=0

Bkx
k

k!
.

Ramanujan's functions P , Q and R are multiples of Eisenstein series G2, G4 and G6,
respectively. That is P = −24G2, Q = 240G4 and R = −504G6. A good explanation
of Eisenstein series can be found in [4, p. 12].
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Ramanujan built on Jacobi's work on theta functions and alluded to three corre-
sponding theories. He gave some results in these theories but without proofs in the
unorganized pages in his second notebook [54, p. 257�262]. They are now referred
to as Ramanujan's theories of elliptic functions to alternative bases. He mentioned
the theories in a letter he sent to Hardy [7] while in his paper "Modular forms and
approximations to π" [52] Ramanujan gave these three theories but did not develop
them. Late in the 20th century these theories were discovered and developed by J.
M. Borwein and P. B. Borwein; see [13]. The cubic theory is based on a(q), b(q) and
c(q) de�ned below. The Borweins' work was extended by B. C. Berndt, S. Bhargava
and F. G. Garvan a few years latter; see [8] and [10]. Then M. D. Hirschhorn and F.
G. Garvan developed further identities in [40].

We let ω = exp
(
2πi
3

)
then the cubic theta functions a, b and c are de�ned by the

Borweins in [13] as

a(q) =
∞∑

j=−∞

∞∑
k=−∞

qj
2+jk+k2 , (2.18)

b(q) =
∞∑

j=−∞

∞∑
k=−∞

ωj−kqj
2+jk+k2 (2.19)

and

c(q) =
∞∑

j=−∞

∞∑
k=−∞

q(j+
1
3
)2+(j+ 1

3
)(k+ 1

3
)+(k+ 1

3
)2 . (2.20)

The Borweins' cubic theta functions a(q), b(q) and c(q) are analogues of Ramanujan's
theta functions

ϕ2(q) =
∞∑

j=−∞

∞∑
k=−∞

qj
2+k2 ,

ϕ2(−q) =
∞∑

j=−∞

∞∑
k=−∞

(−1)j+kqj
2+k2

and

4q
1
2ψ2(q2) =

∞∑
j=−∞

∞∑
k=−∞

q(j+
1
2
)2+(k+ 1

2
)2
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respectively.

The function a(q) has a Lambert series given by

a(q) = 1 + 6
∞∑
j=1

(
j

3

)
qj

1− qj
(2.21)

where (
j

3

)
=


+1 if j = 1 mod 3
−1 if j = −1 mod 3
0 if j = 0 mod 3.

The functions b(q) and c(q) have product formulae in terms of in�nite products and
eta functions. Thus

b(q) =
∞∏
j=1

(1− qj)3

(1− q3j)
=
η31
η3

(2.22)

and

c(q) = 3q
1
3

∞∏
j=1

(1− q3j)3

(1− qj)
= 3

η33
η1
. (2.23)

Proofs of these functions can be found in [13], [15] and [22].

2.3 Weight and level of modular forms

Now we look at the objects that help our classi�cation of modular forms. The modular
group can be de�ned as a group of 2× 2 matrices where the entries are integers and
the determinant is 1. It is called the special linear group and is denoted by SL2(Z)
or Γ, that is

Γ = SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The upper half plane H is the set of all complex numbers z = x + iy where y is
positive that is

H = {z ∈ C : Im(z) > 0} .
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The set Γ is a group and the group operation is matrix multiplication. The group
can be generated by the matrices S and T where

S =

(
0 −1
1 0

)
and

T =

(
1 1
0 1

)
.

Further details can be found in [4, Ch. 2].

We give a de�nition of modular functions as follows:

De�nition 2.1. Let f : H → C. Then f is said to be a modular function for Γ if the

following conditions are satis�ed:

(1) f(τ) is meromorphic in H.

(2) f(τ) acts on the upper half plane H by way of Möbius transformations

f

(
aτ + b

cτ + d

)
= f(τ) for every

(
a b
c d

)
∈ Γ.

(3) f(τ) is meromorphic at the cusps. At the cusp i∞, this means

f(τ) =
∞∑

n=−m

ane
2πinτ =

∞∑
n=−m

anq
n

where q = e2πiτ and m is a non negative integer. Finitely many negative powers

of q are allowed in the expansion.

For details see [4, p. 34] and [44, p. 108]. We now tighten condition (1) of modular
functions to give a de�nition for modular forms.

2.3.1 Weight

We now give a de�nition for modular form.

De�nition 2.2. Let f : H → C. Then f is said to be a modular form of weight k
for Γ if the following conditions are satis�ed:
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(1) f(τ) is holomorphic in H.

(2) f(τ) acts on the upper half plane H by way of Möbius transformations

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for every

(
a b
c d

)
∈ Γ.

(3) f(τ) is holomorphic at the cusps. At the cusp i∞, this means f(τ) has a Fourier
expansion

f(τ) =
∞∑
n=0

ane
2πinτ =

∞∑
n=0

anq
n

where q = e2πiτ .

For "holomorphic at the cusps" see [30, p. 16]. Also see [44, Chapter 3] for more
information on modular forms.

For example, condition (2) for matrix S gives the transformation

f

(
−1

τ

)
= f(τ)

while for matrix T we see the function is periodic with period 1

f (τ + 1) = f(τ).

We provide an informal discussion without rigorous checks that each example meets
the above conditions. The prototype example is Dedekind's eta function. We take
the 24th power using (2.12) so that all the powers in the q expansion are integral

η24(τ) = q
∞∏
j=1

(1− qj)24 = e2πiτ
∞∏
j=1

(1− e2πiτj)24.

Since

e2πi(τ+1) = e2πiτ

it follows that

η24(τ + 1) = η24(τ)

17



hence, η24 is periodic, that is, it satis�es property (2) for the matrix(
a b
c d

)
=

(
1 1
0 1

)
= T

for any integer k.
Another important property of Dedekind's eta functions is the transformation

η

(
−1

τ

)
=

√
τ

i
η(τ)

found in [4, p. 48], [22] and [51]. When we take 24th power of eta we get

η24
(
−1

τ

)
= τ 12η24(τ).

Hence η24 satis�es property (2) for the matrix(
a b
c d

)
=

(
0 −1
1 0

)
= S

for k = 12. Since T and S generate the whole group then property (2) holds for all
matrices in the modular group Γ so η24 is a modular form of weight 12; see [4, Ch. 3].

As another example, we state without proof the transformation formulae for Ra-
manujan's Eisenstein series P , Q and R

P (r) = (cτ + d)2P (q)− 6ic(cτ + d)

π
, (2.24)

Q(r) = (cτ + d)4Q(q)

and

R(r) = (cτ + d)6R(q)

where

r = exp

(
2πi

aτ + b

cτ + d

)
and

(
a b
c d

)
∈ Γ.

The functions Q and R are modular forms of weight 4 and 6 respectively. They satisfy
the three conditions above. The function P is not a modular form because of the pres-
ence of the extra term 6ic(cτ + d)/π in the transformation formula. However, P (r),
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termed a quasi modular form, may be used to construct modular forms of weight 2
which we will discuss shortly. Proofs may be found in [25, Ch. 2 ] and [65, p. 19].

The Fourier expansions for P (q), Q(q) and R(q), that is condition (3), are given in
terms of divisor sums. By expanding (2.14)�(2.16) into geometric series, we observe
that

P (q) = 1− 24
∞∑
n=1

nqn

1− qn
= 1− 24

∞∑
N=1

σ1(N)qN ,

Q(q) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240

∞∑
N=1

σ3(N)qN

and

R(q) = 1− 504
∞∑
n=1

n5qn

1− qn
= 1− 504

∞∑
N=1

σ5(N)qN

where

σk(N) =
∑
d|N

dk

and the sum is over divisors d of N ; see [4, p. 20].

2.3.2 Level

Next we introduce the classi�cation of modular forms by level.

De�nition 2.3. Let ` be a positive integer. The group Γ0(`) is de�ned by

Γ0(`) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod `)

}

A function f is a modular form of weight k with respect to Γ0(`) if the following

conditions apply.

(1) f(τ) is holomorphic in H.

(2) f(τ) acts on the upper half plane H by way of Möbius transformations

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for every

(
a b
c d

)
∈ Γ0(`).
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(3) f(τ) is holomorphic at the cusps. At i∞ f(τ) has a Fourier expansion

f(τ) =
∞∑
n=0

ane
2πinτ =

∞∑
n=0

anq
n

where q = e2πiτ .

Informally, we will refer to modular form of weight k with respect to Γ0(`) simply as
a modular form of weight k and level `.

Suppose f(τ) is a modular form of weight k, ` is a positive integer and g(τ) = f(`τ).
We show that g is a modular form of weight k and level `. We need to show the three
conditions above are satis�ed. Condition (1) is satis�ed since if f is holomorphic, then
g is holomorphic by composition of holomorphic functions. Condition (3) is satis�ed
since the Fourier expansion of g is the Fourier expansion of f with q` in place of q.
So we need only check the transformation property, condition (2). In the group Γ0(`)

c ≡ 0 mod ` so c = e` where e ∈ Z.

Let

g(τ) = f(`τ).

Since

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

it follows that

g

(
aτ + b

cτ + d

)
= f

(
`
aτ + b

cτ + d

)
= f

(
a`τ + b`

cτ + d

)
= f

(
a(`τ) + b`

e(`τ) + d

)
.

Let t = `τ to get

g

(
aτ + b

cτ + d

)
= f

(
at+ b`

et+ d

)
. (2.25)

Since

det

(
a b`
e d

)
= ad− b`e = ad− bc = 1

by property (2), (2.25) becomes

g

(
aτ + b

cτ + d

)
= f

(
at+ b`

et+ d

)
= (et+ d)kf(t).
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But g(τ) = f(`τ), t = `τ and c = e`, so

g

(
aτ + b

cτ + d

)
= f

(
a`τ + b`

cτ + d

)
= (cτ + d)kf(`τ) = (cτ + d)kg(τ).

Therefore g(τ) is a modular form of level ` and weight k.

Here is another example, where the quasi modular form P is used to construct a
modular form of weight 2 and level `. Let

Z` =
`P (q`)− P (q)

`− 1
. (2.26)

We want to show Z` is a modular form. We need to show (2.26) ful�ls the criteria
in De�nition 2.3. The Equation Z` is holomorphic since P is holomorphic. Z` has
a Fourier expansion so we need only show that Z` transforms by way of Möbius
transformations, that is

Z`

(
aτ + b

cτ + d

)
= (cτ + d)2Z`(τ) for every

(
a b
c d

)
∈ Γ0(`). (2.27)

We will work in terms of τ . De�ne

P̃ (τ) = P (e2πiτ ),

then by de�nition

Z`

(
aτ + b

cτ + d

)
=
`P̃
(
`aτ+b
cτ+d

)
− P̃

(
aτ+b
cτ+d

)
`− 1

.

By Equation (2.24) we have

P̃

(
aτ + b

cτ + d

)
= (cτ + d)2P̃ (τ)− 6ic(cτ + d)

π
. (2.28)

Since c ≡ 0 mod ` we can write c = e` where e ∈ Z. Then let t = `τ . So

P̃

(
`
aτ + b

cτ + d

)
= P̃

(
a`τ + b`

e`τ + d

)
= P̃

(
at+ b`

et+ d

)
= (et+ d)2P̃ (t)− 6ie(et+ d)

π
,
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where the last line comes from (2.24) with the matrix

(
a b`
e d

)
∈ Γ0(`).

Now converting back to c and τ we have

P̃

(
`
aτ + b

cτ + d

)
= (cτ + d)2P̃ (`τ)− 6ie(cτ + d)

π
. (2.29)

Substituting (2.28) and (2.29) into (2.26) gives

Z`

(
aτ + b

cτ + d

)
=

(cτ + d)2`P̃ (`τ)− 6ie`(cτ+d)
π

−
(

(cτ + d)2P̃ (τ)− 6ic(cτ+d)
π

)
`− 1

=
(cτ + d)2`P̃ (`τ)− 6ic(cτ+d)

π
−
(

(cτ + d)2P̃ (τ)− 6ic(cτ+d)
π

)
`− 1

= (cτ + d)2

(
`P̃ (`τ)− P̃ (τ)

)
`− 1

.

This proves that Z` given by (2.26) is a modular form of weight 2 and level `.

A heuristic way of determining the level is to look at the discriminant of the quadratic
power of q in the theta function. For example

z =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+2n2

, |q| < 1.

If

am2 + bmn+ cn2 (2.30)

is the quadratic polynomial, then the discriminant is

b2 − 4ac.

So the discriminant of m2 +mn+ 2n2 is −7 where 7 is the level.

For a comprehensive guide and proofs of modular groups and modular forms the
reader is refereed to any of the following books and articles [4], [14], [22], [43], [56]
or [65].
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Chapter 3

Functions of modular form

Functions of modular forms satisfy linear di�erential equations. In preparation for
developing di�erential equations we give relevant de�nitions and identities for level 3
(cubic) theta functions, level 7 (septic) theta functions and their Eisenstein series as
there are many similarities between the two theories.

3.1 Level 3: cubic theta functions

3.1.1 De�nitions

We begin this section with four de�nitions. Let q be a complex number with |q| < 1,
then the de�nition of z3 is given in terms of the Borweins' cubic theta function (2.18)
and the double sum where the discriminant of the polynomial exponent of q indicates
the level:

z3 = a(q) =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+n2

. (3.1)

Now we de�ne Z3 in terms of Ramanujan's Eisenstein series (2.14) as

Z3 =
1

2

(
3P (q3)− P (q)

)
. (3.2)

The de�nition of x3 is given in terms of the Borweins' cubic theta functions (2.18)
and (2.20) as

x3 =

(
c(q)

a(q)

)3

. (3.3)

So the de�nition of X3 given in terms of eta functions and Z3 (3.2) is

X3 =

(
η21η

2
3

Z3

)3

(3.4)

where η1 and η3 are de�ned by (2.13).
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3.1.2 Eisenstein series

We met P (q) and Q(q) in Equations (2.14) and (2.15) in our historical overview and
now that we have de�ned z3 and x3 we can express Ramanujan's Eisenstein Series
P (q) and P (q3) in terms of these.

Theorem 3.1. Let z3 and x3 be de�ned by (3.1) and (3.3). Then

P (q) =
12q

z3

dz3
dq

+ (1− 4x3)z
2
3 ,

3P (q3) =
12q

z3

dz3
dq

+ (3− 4x3)z
2
3

and

Q(q) = z43(1 + 8x3),

Q(q3) = z43(1− 8

9
x3).

Proof. Proofs can be found in [10] and [22].

3.1.3 Properties

In this section we look at properties of the cubic theta functions and accordingly seek
identities involving the square, third and fourth powers of z3 and their equivalent
powers of a(q). These properties were known to Ramanujan; see his second note-
book [54, Chapter, 21 Entry 5] and developed and proved by B. Berndt [6, p. 467].
We begin with z23 and z43 in terms of the Borweins' cubic theta functions and the
Eisenstein series.

Theorem 3.2. Let z3 and a(q) be de�ned by (3.1). Then

z23 = a2(q) = Z3 =
1

2

(
3P (q3)− P (q)

)
(3.5)

and

z43 = a4(q) =
1

10
(9Q(q3) +Q(q)). (3.6)

Proof. The result follows from Theorem 3.1.

The next identity in this section is the Borweins' cubic identity given by
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Theorem 3.3. Let a(q), b(q), c(q) and z3 be de�ned by (2.21), (2.22), (2.23) and (3.1),
respectively. Then

z33 = a3(q) = b3(q) + c3(q). (3.7)

Proof. Proofs are given in [10], [13] and [15].

We now give a consequence of Theorem 3.3

Corollary 3.4. Let the Borweins' cubic theta functions a(q), b(q), c(q) and x3 be

de�ned by (2.21), (2.22), (2.23) and (3.3), respectively. Then

1− x3 = 1−
(
c(q)

a(q)

)3

=

(
b(q)

a(q)

)3

. (3.8)

Proof. The proof follows from Theorem 3.3.

We can relate X3 to x3 by the following theorem.

Theorem 3.5. Let x3 and X3 be de�ned by (3.3) and (3.4). Then

X3 =
x3(1− x3)

27
. (3.9)

Proof. Using the Borweins' cubic theta functions (2.21), (2.22), (2.23) and (3.4) we
have

x3(1− x3) =
b(q)3c(q)3

a(q)6
=

27η61η
6
3

z63
= 27X3.

Rearranging completes the proof.

We end this section by solving (3.9) for x3. Rearranging gives

x3 =
1

2
±
√

1− 108X3

2
.

From (3.3) and (3.4) we see q = 0 when x3 = X3 = 0 so the only root that satis�es
this condition is

x3 =
1

2
−
√

1− 108X3

2
. (3.10)
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3.2 Level 7: septic theta functions

3.2.1 De�nitions

In this section we give �ve de�nitions. The �rst two are de�nitions of the functions
y7 and w7 in terms of eta functions (2.13).

y7 =
η71
η7

=
∞∏
j=1

(1− qj)7

(1− q7j)
(3.11)

and

w7 =
η47
η41

= q

∞∏
j=1

(1− q7j)4

(1− qj)4
. (3.12)

Next we de�ne z7 in terms of a double sum theta function where the discriminant of
the exponent indicates the level as shown in (2.30)

z7 =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+2n2

. (3.13)

The de�nition of Z7 is given in terms of Ramanujan's Eisenstein series (2.14)

Z7 =
7P (q7)− P (q)

6
. (3.14)

Now we give a de�nition of X7 in terms of eta functions (2.13) and Eisenstein se-
ries (3.14)

X7 =
η31η

3
7

Z
3
2
7

. (3.15)

3.2.2 Eisenstein series

Ramanujan's Eisenstein Series P (q) and P (q7) can be expressed in terms of w7 and z7
as follows:

Theorem 3.6. Let w7 and z7 be de�ned by (3.12) and (3.13). Then

P (q) =

(
1− 39w7 − 343w2

7

1 + 13w7 + 49w2
7

)
z27 + 12w7z7

dz7
dw7

,

P (q7) =

(
1 + 39

7
w7 − 7w2

7

1 + 13w7 + 49w2
7

)
z27 +

12

7
w7z7

dz7
dw7

,

Q(q) =

(
1 + 245w7 + 2401w2

7

1 + 13w7 + 49w2
7

)
z47
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and

Q(q7) =

(
1 + 5w7 + w2

7

1 + 13w7 + 49w2
7

)
z47 .

Proof. Proofs are found in [17] and [27].

3.2.3 Properties

Now we look at properties of the level 7 theta functions. As with level 3, we need
identities involving second, third and fourth powers. We note Theorems 3.7, 3.8
and 3.9 are analogues for the level 3 Equations (3.5), (3.7) and (3.6), respectively.
The following identity relates z7 to Z7.

Theorem 3.7. Let z7 and Z7 be de�ned by (3.13) and (3.14). Then

z27 = Z7 (3.16)

that is (
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+2n2

)2

=
7P (q7)− P (q)

6
.

Proof. Ramanujan knew of this expression; see his second notebook [54, Chapter 21,
Entry 5(i)]. It was proved by Andrews and Berndt in [2, p. 404]. Further proofs are
found in [21] and [27].

The following useful identity gives a representation of z37 in terms of y7 and w7.

Theorem 3.8. Let y7, w7 and z7 be de�ned by (3.11), (3.12) and (3.13), respectively.
Then

z37 = (1 + 13w7 + 49w2
7)y7.

Proof. This was known to Ramanujan; see his second notebook [54, Chapter 21, Entry
5]. It was developed and proved by B. Berndt in [6, p. 467]. Further proofs can be
found in [21], [27] and [47].

Next an identity for z47 is given in terms of w7 and Q(q).

Theorem 3.9. Let w7, z7 and Q(q) be de�ned by (3.12) and (3.13) and Theorem 3.6,

respectively. Then

z47 =
1 + 13w7 + 49w2

7

1 + 245w7 + 2401w2
7

Q(q).

27



Proof. A proof is found in [27].

The following identity is a representation of X7 in terms of w7.

Theorem 3.10. Let w7 and X7 be de�ned by (3.12) and (3.15). Then

X7 =
w7

1 + 13w7 + 49w2
7

.

Proof. Substituting (3.11) into Theorem 3.8 gives us

z37 = Z
3
2
7 = (1 + 13w7 + 49w2

7)
η71
η7
. (3.17)

By rearranging (3.15) and equating with (3.17) we obtain

X7 =

(
1

1 + 13w7 + 49w2
7

)
η47
η41
.

Using (3.12) completes the proof.

We end this section with the following two identities.

Corollary 3.11. Let w7 and X7 be de�ned as (3.12) and (3.15). Then

1 +X7 =
(1 + 7w7)

2

1 + 13w7 + 49w2
7

(3.18)

and

1− 27X7 =
(1− 7w7)

2

1 + 13w7 + 49w2
7

. (3.19)

Proof. Using Theorem 3.10

1 +X7 = 1 +
w7

1 + 13w7 + 49w2
7

(3.20)

=
1 + 14w7 + 49w7

2

1 + 13w7 + 49w2
7

and

1− 27X7 = 1− 27
w7

1 + 13w7 + 49w2
7

(3.21)

=
1− 14w7 + 49w7

2

1 + 13w7 + 49w2
7

.

(3.22)

Factoring the numerators completes the proof.
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Chapter 4

Derivatives

In order to derive di�erential equations in the next chapter we must compute deriva-
tives of the functions de�ned in Chapter 3. Hence, we give derivatives with respect
to the parameter q for x3, X3 and z3 for level 3 and logw7, logX7, log y7 and log z7
for level 7. We will use the operator q d

dq
where

q
d

dq
= q

d

dτ

dτ

dq
= q

d

dτ

/(
dq

dτ

)
= q

d

dτ

/
(2πiq) =

1

2πi

d

dτ

for q = e2πiτ and Imτ > 0.

We start with Ramanujan's derivative for P (q).

Theorem 4.1. Let P (q) and Q(q) be de�ned by (2.14) and (2.15). Then

q
dP (q)

dq
=

P 2(q)−Q(q)

12
.

Proof. Ramanujan's proof can be found in his paper; see [53]

One of the techniques we will be using is logarithmic di�erentiation; for a good
description see [5, p. 322].

4.1 Level 3 derivatives

The derivative for x3 is as follows:

Theorem 4.2. Let z3 and x3 be de�ned by (3.1) and (3.3). Then

q
dx3
dq

= z23x3(1− x3).

Proof. Using (2.13), (2.22), (2.23), (3.3) and (3.8) we obtain

x3
1− x3

=

(
c(q)

b(q)

)3

=

(
3
η43
η41

)3

= 27q
∞∏
j=1

(
1− q3j

1− qj

)12

.
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Using logarithmic di�erentiation gives us(
1

x3
+

1

1− x3

)
q
dx3
dq

=
3P (q3)− P (q)

2
.

Then rearranging the left hand side and using (3.5) we obtain

1

x3(1− x3)
q
dx3
dq

= z23 .

Rearranging completes the proof.

We now want to establish the derivative for X3.

Theorem 4.3. Let X3 and Z3 be de�ned by (3.4) and (3.5). Then

q
dX3

dq
= Z3X3

√
1− 108X3.

Proof. As established in Theorem 3.5 we can write X3 as

X3 =
x3(1− x3)

27
.

We apply the operator q d
dq

to get

q
dX3

dq
=

1

27
(1− 2x3)q

dx3
dq

.

Using Theorem 4.2 and Equations (3.5) and (3.9) we obtain

q
dX3

dq
= Z3X3(1− 2x3)

then use Equation (3.10) to complete the proof.

In order to compute derivatives for z3 we require the following lemma:

Lemma 4.4. Let z3 and x3 be de�ned as (3.1) and (3.3). Then

z123 x3(1− x3)3 = 27q
∞∏
j=1

(1− qj)24

and

z123 x
3
3(1− x3) = 273q3

∞∏
j=1

(1− q3j)24.
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Proof. Using (2.21), (2.22), (2.23), (3.1), (3.3) and (3.8) we have

z123 x3(1− x3)3 = a12(q)× c3(q)

a3(q)
×
(
b3(q)

a3(q)

)3

= b9(q)c3(q) = 27q
∞∏
j=1

(1− qj)24

and

z123 x
3
3(1− x3) = a12(q)×

(
c3(q)

a3(q)

)3

× b3(q)

a3(q)
= b3(q)c9(q) = 273q3

∞∏
j=1

(1− q3j)24.

Accordingly, we compute two di�erent expressions for the derivative of z3.

Theorem 4.5. Let P , z3 and x3 be de�ned as (2.14), (3.1) and (3.3), respectively.
Then

q
dz3
dq

=
z3(P (q)− (1− 4x3)z

2
3)

12
(4.1)

and

q
dz3
dq

=
z3(3P (q3)− (3− 4x3)z

2
3)

12
. (4.2)

Proof. Take logarithms of the identities of Lemma 4.4 and apply the operator q d
dq
.

Then using Theorem 4.2 and Equation (2.14) we obtain

P (q) =
12q

z3

dz3
dq

+ (1− 4x3)z
2
3

and

3P (q3) =
12

z3
q
dz3
dq

+ (3− 4x3)z
2
3 .

Rearranging again completes the proofs.

4.2 Level 7 derivatives

Next we compute the derivative for w7.

Theorem 4.6. Let w7, z7 and Z7 be de�ned by (3.12), (3.13) and (3.14), respectively.
Then

q
d

dq
logw7 = Z7 = z27 .
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Proof. Using (3.12)

w7 = q

∞∏
j=1

(1− q7j)4

(1− qj)4

and by logarithmic di�erentiation we obtain

q
d

dq
logw7 = 1−

∞∑
j=1

28jq7j

1− q7j
+
∞∑
j=1

4jqj

1− qj
.

Now using (2.14) gives us

q
d

dq
logw7 =

1

6
(7P (q7)− P (q)).

Using Equation (3.14) and Theorem 3.7 completes the proof

We give the derivative for X7.

Theorem 4.7. Let Z7 and X7 be de�ned by (3.14) and (3.15). Then

q
d

dq
logX7 = Z7

√
1− 26X7 − 27X2

7 .

Proof. By Theorem 3.10 we have

X7 =
w7

1 + 13w7 + 49w2
7

,

where w7 is de�ned by (3.12). By logarithmic di�erentiation

q
d

dq
logX7 = q

d

dq
log

(
w7

1 + 13w7 + 49w2
7

)
= q

d

dq
logw7 −

w7(13 + 98w7)

1 + 13w7 + 49w2
7

q
d

dq
logw7.

By Theorem 4.6, this simpli�es to

q
d

dq
logX7 = Z7

(
(1 + 7w7)(1− 7w7)

1 + 13w7 + 49w2
7

)
.

Using (3.18) and (3.19) we obtain

q
d

dq
logX7 = Z7

√
1− 26X7 − 27X2

7 .

This completes the proof.
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Our next derivative is for y7.

Theorem 4.8. Let P and y7 be de�ned by (2.14) and (3.11). Then

q
d

dq
log y7 =

7

24

(
P (q)− P (q7)

)
.

Proof. Using (3.11)

y7 =
∞∏
j=1

(1− qj)7

(1− q7j)

and logarithmic di�erentiation gives us

q
d

dq
log y7 = q

d

dq
log

(
∞∏
j=1

(1− qj)7

(1− q7j)

)

=
∞∑
j=1

7jqj

1− qj
−
∞∑
j=1

7jq7j

1− q7j
.

Using (2.14) we obtain

q
d

dq
log y7 =

7

24
(P (q)− P (q7))

which completes the proof.

We give the derivative for z7.

Theorem 4.9. Let P , w7 and z7 be de�ned in (2.14), (3.12) and (3.13), respectively.
Then

q
d

dq
log z7 =

7

72
(P (q)− P (q7)) +

1

3

w7(13 + 98w7)

(1 + 13w7 + 49w2
7)
z27 .

Proof. Using Theorem 3.8, that is

z37 = (1 + 13w7 + 49w2
7)y7

and applying logarithmic di�erentiation gives us

3q
d

dq
log z7 = q

d

dq
log y7 + q

d

dq
log(1 + 13w7 + 49w2

7).

33



Now using Theorem 4.8 and rearranging the second term on the right hand side we
obtain

3q
d

dq
log z7 =

7

24
(P (q)− P (q7)) +

w7(13 + 98w7)

1 + 13w7 + 49w2
7

q
d

dq
log(w7).

Use Theorem 4.6 to get

3q
d

dq
log z7 =

7

24
(P (q)− P (q7)) +

w7(13 + 98w7)

1 + 13w7 + 49w2
7

z27

then division by 3 completes the proof.
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Chapter 5

Di�erential equations

As we mentioned in Chapter 3, modular forms satisfy linear di�erential equations.
The weight now becomes an important factor in determining the order of a particular
di�erential equation. Zagier [65, Sec. 5.4 Proposition 21] says if our function f is
modular form with integral positive weight k and we have a modular function t then
f satis�es a linear di�erential equation of order k+1 with respect to t. In this section
we derive di�erential equations for z3, Z3 and z7, Z7. We use techniques from calculus
such as the chain rule, the product and quotient rules and di�erential operators and
rely on the properties of Eisenstein series and theta functions.

5.1 Level 3 di�erential equations

We want to show that z3, a modular form of weight one, satis�es a second order linear
di�erential equation with respect to x3, a modular form of weight zero.

Theorem 5.1. Let z3 and x3 be de�ned by (3.1) and (3.3). Then the following

di�erential equation for z3 with respect to x3 holds:

d

dx3

(
x3(1− x3)

dz3
dx3

)
=

2

9
z3. (5.1)

Proof. By Theorem 4.2 we have

q
dx3
dq

= z23x3(1− x3).

Using the chain rule we obtain the di�erential operator

d

dx3
=

1

z23x3(1− x3)
q
d

dq

where rearranging gives

x3(1− x3)
d

dx3
=

1

z23
q
d

dq
. (5.2)

Two applications of (5.2) give

d

dx3

(
x3(1− x3)

dz3
dx3

)
=

1

z23x3(1− x3)
q
d

dq

(
1

z23
q
dz3
dq

)
. (5.3)
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Using (4.1) we have

d

dx3

(
x3(1− x3)

dz3
dx3

)
=

1

z23x3(1− x3)
q
d

dq

(
P (q)− (1− 4x3)z

2
3

12z3

)
=

1

12z23x3(1− x3)
q
d

dq

(
P (q)

z3
− (1− 4x3)z3

)
.

We now calculate the derivative of the right hand side. Let

A =
1

12z23x3(1− x3)
.

Then

d

dx3

(
x3(1− x3)

dz3
dx3

)
= Aq

d

dq

(
P (q)

z3
− (1− 4x3)z3

)
= A

(
q
d

dq

P (q)

z3
− q d

dq
(1− 4x3)z3

)
by separating the sum. Then using Theorems 4.1, 4.2, Equation (4.1) and the chain
rule and product and quotient rules of calculus we obtain

d

dx3

(
x3(1− x3)

dz3
dx3

)
= A

(
P 2(q)−Q(q)

12z3
− P (q)z3P (q)− (1− 4x3)

2z23
12z23

+ 4z33x3(1− x3)
)

= A

(
P 2(q)−Q(q)− P 2(q) + (1− 4x3)

2z23
12z3

+ 4z33x3(1− x3)
)

= A

(
−Q(q) + (1− 4x3)

2z23)

12z3
+ 4z33x3(1− x3)

)
. (5.4)

Now substituting A back into (5.4) to obtain

d

dx3

(
x3(1− x3)

dz3
dx3

)
=

(1− 4x3)
2z43 −Q(q)

144z33x3(1− x3)
+
z3
3
. (5.5)

In a similar manner we can use (4.2) in (5.3) to obtain

d

dx3

(
x3(1− x3)

dz3
dx3

)
=

1

12z23x3(1− x3)
q
d

dq

(
3P (q3)

z3
− (3− 4x3)z3

)
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and the derivative of the right hand side can be found using Theorems 4.1, Equa-
tions (4.1) and (4.2) as follows:

d

dx3

(
x3(1− x3)

dz3
dx3

)
=

(3− 4x3)
2z43 − 9Q(q3)

144z33x3(1− x3)
+
z3
3
. (5.6)

Adding (5.5) and (5.6) gives us

2
d

dx3

(
x3(1− x3)

dz3
dx3

)
=

(1− 4x3)
2z43 −Q(q)

144z33x3(1− x3)
+
z3
3

+
(3− 4x3)

2z43 − 9Q(q3)

144z33x3(1− x3)
+
z3
3
.

After rearranging and dividing by 2 we get

d

dx3

(
x3(1− x3)

dz3
dx3

)
=

2z3
9

+
10z43 −Q(q)− 9Q(q3)

288z33x3(1− x3)
.

Then using (3.6) completes the proof.

In our next theorem we change variables from x3 to X3.

Theorem 5.2. Let z3 and X3 be de�ned by (3.1) and (3.4). Then the following

di�erential equation for z3 with respect to X3 holds:

X3(1− 108X3)
d2z3
dX2

3

+ (1− 162X3)
dz3
dX3

= 6z3. (5.7)

Proof. We begin with Equation (3.10)

x3 =
1

2
−
√

1− 108X3

2
.

We di�erentiate with respect to X3 and rearrange to get

dX3

dx3
=

√
1− 108X3

27
.

We now take an arbitrary function F . By using the chain rule we can work out the
derivative of F in terms of x.

dF

dX3

dX3

dx3
=

√
1− 108X3

27

dF

dX3

.

We can now use the resulting operator

d

dx3
=

√
1− 108X3

27

d

dX3

. (5.8)
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Multiplying both sides of (5.8) by x3(1− x3) and using Theorem 3.5 we obtain

x3(1− x3)
d

dx3
= x3(1− x3)

√
1− 108X3

27

d

dX3

= X3

√
1− 108X3

d

dX3

.

Now let us multiply both sides of (5.1) by x3(1− x3) to obtain

x3(1− x3)
d

dx3

(
x3(1− x3)

dz3
dx3

)
= x3(1− x3)

2z3
9
.

Using the operator (5.8) we change variables from x3 to X3 to get

X3

√
1− 108X3

d

dX3

(
X3

√
1− 108X3

dz3
dX3

)
= 27X3

2z3
9

= 6X3z3. (5.9)

Let

B3 =
√

1− 108X3.

We can now abbreviate (5.9) as follows:

X3B3
d

dX3

(
X3B3

dz3
dX3

)
= 6X3z3.

We have now established the di�erential equation in self adjoint form. We can ob-
tain (5.7) from that.

To prove the di�erential equation for Z3 with respect to X3 we need the following
standard technique.

Lemma 5.3. Suppose y is a solution of a second order linear di�erential equation

y′′ + f1y
′ + f2y = 0. (5.10)

Then Y = y2 is a solution to the third order ordinary linear di�erential equation

Y ′′′ + 3f1Y
′′ + (f ′1 + 4f2 + 2f 2

1 )Y ′ + (2f ′2 + 4f1f2)Y = 0, (5.11)

where the primes denote di�erentiation with respect to x, and f1 and f2 are functions
of x.
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Proof. The essence of the proof is that Y , Y ′, Y ′′ and Y ′′′ are all linear combinations
of y2, yy′ and (y′)2, hence they are linearly dependent. The details are as follows.
If

Y = y2

then

Y ′ = 2yy′

and

Y ′′ = 2(y′)2 + 2yy′′.

We can now substitute for y′′ from the di�erential equation (5.10) so Y ′′ is a linear
combination of y2, yy′ and (y′)2. The result is

Y ′′ = 2(y′)2 − 2f1yy
′ − 2f2y

2.

Similarly Y ′′′ can also be written as a a linear combination of y2, yy′ and (y′)2. We
�nd that

Y ′′′ = 2f 2
1 yy

′ + 2f1f2y
2 − 2f ′1yy

′ − 2f ′2y
2 − 6f1(y

′)2 − 8f2yy
′.

Now we can substitute these values for Y, Y ′, Y ′′ and Y ′′′ into (5.11)

Y ′′′ + 3f1Y
′′ + (f ′1 + 4f2 + 2f 2

1 )Y ′ + (2f ′2 + 4f1f2)Y

=2f 2
1 yy

′ + 2f1f2y
2 − 2f ′1yy

′ − 2f ′2y
2 − 6f1(y

′)2 − 8f2yy
′

− 6f 2
1 yy

′ − 6f1f2y
2 + 6f1(y

′)2

+ 2f ′1yy
′ + 8f2yy

′ + 4f 2
1 yy

′

+ 2f ′2y
2 + 4f1f2y

2

=0

and Y is indeed a solution to Equation (5.11) completing the proof.

We now show Z3, a modular form of weight two, satis�es a third order linear di�er-
ential equation with respect to X3, a modular form of weight zero .

Theorem 5.4. Let Z3 and X3 be de�ned as (3.2) and (3.4). Then the following

di�erential equation holds:

X2
3 (1− 108X3)

d3Z3

dX3
3

+ 3X3(1− 162X3)
d2Z3

dX2
3

+ (1− 348X3)
dZ3

dX3

= 12Z3. (5.12)
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Proof. Use Theorem 5.2 to let

f1 =
1− 162X3

X3(1− 108X3)

f2 =
−6

X3(1− 108X3)
.

Now use Lemma 5.3 and substitute f1 and f2 into

Z ′′′3 + 3f1Z
′′
3 + (f ′1 + 4f2 + 2f 2

1 )Z ′3 + (2f ′2 + 4f1f2)Z3 = 0

and our theorem is proved.

5.2 Level 7 di�erential equations

We begin by �nding a di�erential equation for z7, a modular form of weight one, with
respect to w7. We move through a change of variables to �nd a second order linear
di�erential equation for z7 with respect to X7, a modular form of weight zero and a
third order di�erential equation for Z7, weight two with respect to X7. The following
theorem is also found in [25].

Theorem 5.5. Let w7 and z7 be de�ned by (3.12) and (3.13). Then the following

di�erential equation for z7 with respect to w7 holds:

d

dw7

(
w7

dz7
dw7

)
= 2z7

(
1 + 16w7 + 49w2

7

(1 + 13w7 + 49w2
7)

2

)
. (5.13)

Proof. Using Theorems 4.6, 4.9 and the chain rule we obtain two equations

q d
dq

log z7

q d
dq

logw7

=

1
z7
× dz7

dq

1
w7
× dw7

dq

=
w7

z7
× dz7
dw7

and

q d
dq

log z7

q d
dq

logw7

=
1

z27
×
(

7

72
(P (q)− P (q7)) +

(
w7

3
× 13 + 98w7

1 + 13w7 + 49w2
7

)
z27

)
.

Equating and multiplying by z7 gives us

w7
dz7
dw7

=
7

72z7
× (P (q)− P (q7)) +

(
w7

3
× 13 + 98w7

1 + 13w7 + 49w2
7

)
z7. (5.14)
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After manipulating Theorem 4.6 we obtain the operator identity

d

dw7

=
1

w7z27
q
d

dq
.

We now apply this operator to (5.14) and use the product rule to obtain

d

dw7

(
w7

dz7
dw7

)
=

7

72w7z37
q
d

dq
(P (q)− P (q7))− 7

72z27

(
dz7
dw7

)
(P (q)− P (q7))

+
w7

3

(
13 + 98w7

1 + 13w7 + 49w2
7

)
dz7
dw7

+
z7
3

(
13 + 196w7 + 637w2

7

(1 + 13w7 + 49w2
7)

2

)
.

We compute the derivatives of P (q) and P (q7) using Theorem 4.1. Then by Theo-
rem 3.6 we can express P (q), P (q7), Q(q) and Q(q7) in terms of w7, z7 and dz7/dw7.
With the help of a computer this simpli�es to

d

dw7

(
w7

dz7
dw7

)
= 2z7

(
1 + 16w7 + 49w2

7

(1 + 13w7 + 49w2
7)

2

)
and our theorem is proved.

The following theorem, that also appears in [25], is found by changing the variable
from w7 to X7 we get a second order di�erential equation for z7 with respect to X7

as follows:

Theorem 5.6. Let z7 and X7 be de�ned by (3.13) and (3.15). Then the following

di�erential equation for zz with respect to X7 holds:

X7(1− 26X7 − 27X2
7 )
d2z7
dX2

7

+ (1− 39X7 − 54X2
7 )
dz7
dX7

− 2(1 + 3X7)z7 = 0. (5.15)

In self adjoint form this becomes

B7X7
d

dX7

(
B7X7

dz7
dX7

)
= 2X7(1 + 3X7)z7 (5.16)

where

B7 =
√

1− 26X7 − 27X2
7 .

Proof. From the derivatives for w7 and X7 in Theorems 4.6 and 4.7 we obtain two
equations

q d
dq

logX7

q d
dq

logw7

=

1
X7
× dX7

dq

1
w7
× dw7

dq

=
w7

X7

× dX7

dw7
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and

q d
dq

logX7

q d
dq

logw7

=
Z7

√
1− 26X7 − 27X2

7

Z7

=
√

1− 26X7 − 27X2
7

= B7.

Equating gives us

w7

X7

× dX7

dw7

= B7.

Rearranging gives the di�erential operator

w7
d

dw7

= X7B7
d

dX7

. (5.17)

Now multiplying (5.13) by w7

w7
d

dw7

(
w7

dz7
dw7

)
= 2z7w7

(
1 + 16w7 + 49w2

7

(1 + 13w7 + 49w2
7)

2

)
. (5.18)

We now use (5.17) in (5.18) to show

B7X7
d

dX7

(
B7X7

dz7
dX7

)
= 2z7w7

(
1 + 16w7 + 49w2

7

(1 + 13w7 + 49w2
7)

2

)
= 2z7

(
w7

1 + 13w7 + 49w2
7

)(
1 + 16w7 + 49w2

7

1 + 13w7 + 49w2
7

)
= 2z7X7

(
1 + 16w7 + 49w2

7

1 + 13w7 + 49w2
7

)
= 2z7X7

(
1 +

3w7

(1 + 13w7 + 49w2
7)

)
= 2z7X7(1 + 3X7).

We have established the di�erential equation in self adjoint form, completing the
proof.

We now change the variable from z7 to Z7 to �nd a third order di�erential equation
for Z7 with respect to X7. This di�erential equation also appears in [24].
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Theorem 5.7. Let Z7 and X7 be de�ned by (3.14) and (3.15). Let
B7 =

√
1− 26X7 − 27X2

7 and H7 = 4X7(1 + 3X7). Then the following di�erential

equation for Z7 with respect to X7 holds:

d

dX7

(
B7X7

d

dX7

(
B7X7

dZ7

dX7

))
= 2H7

dZ7

dX7

+
dH7

dX7

Z7. (5.19)

In expanded form this becomes

X2
7 (1− 26X7 − 27X2

7 )
d3Z7

dX3
7

+ 3X7(1− 39X7 − 54X2
7 )
dZ2

7

dX2
7

+ (1− 86X7 − 186X2
7 )
dZ7

dX7

− 4(1 + 6X7)Z7 = 0. (5.20)

Proof. To �nd the third order di�erential equation for Z7 with respect to X7 we use
Equation (5.15) to obtain

f1 =
(1− 39X7 − 54X2

7 )

X7(1− 26X7 − 27X2
7 )

and

f2 =
−2(1 + 3X7)

X7(1− 26X7 − 27X2
7 )
.

Now use Lemma 5.3 and substituting f1 and f2 into

Z ′′′7 + 3f1Z
′′
7 + (f ′1 + 4f2 + 2f 2

1 )Z ′7 + (2f ′2 + 4f1f2)Z7 = 0

gives (5.20) .
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Chapter 6

Main results

In this chapter we give the main results of this thesis. That is, we �nd two new integer
sequences {c7(n)} and {u7(n)} as a result of solving di�erential equations. We start
with an outline of the method of solution and give examples from the classical case
and level 3 before moving on to the level 7 results.

The technique we use to solve di�erential equations of the type in the previous chap-
ter is called the method of Frobenius; see [3, p. 180] or [69, p. 251]. These second and
third order di�erential equations will have two or three linearly independent solutions
respectively, however only one solution is analytic at x = 0 as required by the initial
conditions. The form of solution depends on the level. The classical case, due to
Jacobi [41], is now classi�ed as level 4 and expressed as a hypergeometric function
which we de�ne as

pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
=
∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

xn

n!
(6.1)

where the shifted factorial (a)n is given by:

(a)n =

{
a(a+ 1)(a+ 2) . . . (a+ n− 1) if n ∈ Z+

1 if n = 0.

Ramanujan changed parameters in Jacobi's hypergeometric functions. In [52] he came
up corresponding theories now known as Ramanujan's theories of elliptic functions
to alternative bases, see [8, Ch. 33]. They correspond to levels 1, 2 and 3. Further
functions at higher levels, that is 5, 6, 7, 8, 9 and higher, are found in [11], [16], [17],
[20], [21], [23], [22], [26], [27] etc. and the solutions are expressed as power series.
The coe�cients in the expansion of these series give us interesting integer sequences
and that is the focus of this chapter.

6.1 Classical case: level 4

Hypergeometric functions that are solutions to second order di�erential equations
were studied by Euler in 1769, Gauss in 1812 and others; see [1, Sec. 2.3]. They
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showed that

z = 2F1

(
1
2
, 1

2

1
;x

)
=
∞∑
n=0

(1
2
)n(1

2
)n

(n!)2
xn (6.2)

was the only analytic solution that satis�ed

x(1− x)
d2z

dx2
+ (1− 2x)

dz

dx
− 1

4
z = 0

when the initial conditions z = 1 when x = 0 were taken into account. Jacobi [41]
gives a parametrization of z and x in terms of modular forms and theta functions;
this is described in Chapter 7.

6.2 Level 3

We now consider solutions to the di�erential equations in Theorems 5.1 and 5.6. The
�rst, Equation (5.1) is of second order. Let z3 and x3 be as de�ned in (3.1) and (3.3).
If we take as initial conditions z3 = 1 when x3 = 0, then the only solution that is
analytic is the hypergeometric function in x3

z3 = 2F1

(
1
3
, 2

3

1
;x3

)
. (6.3)

Proofs can be found in [8, Ch. 33], [10] and [22].

The second, Equation (5.12) is third order. Let Z3 and X3 be de�ned by (3.2)
and (3.4). This time the analytic solution is found by letting the initial conditions be
Z3 = 1 when X3 = 0 and gives a hypergeometric function in X3

Z3 = 3F2

(
1
3
, 1

2
, 2

3

1, 1
; 108X3

)
. (6.4)

A proof can be found in [1, Ch. 2].

6.3 Level 7

In the previous chapter we solved three level 7 di�erential equations to give two power
series in X7 and one in w7. The coe�cients satisfy recurrence relations which give us
integer sequences.
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6.3.1 A new sequence {c7(n)}

If we expand z7 as a power series in X7 then the following three-term quadratic
recurrence relation occurs. This is one of the main results of this thesis.

Theorem 6.1. Let z7 and X7 be de�ned by (3.13) and (3.15) and let {c7(n)} be the

sequence de�ned by the recurrence relation

(n+ 1)2c7(n+ 1) = (26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1) (6.5)

for n ≥ 0

with initial conditions

c7(−1) = 0, c7(0) = 1.

Then in a neighbourhood of q = 0 the generating function is

z7 =
∞∑
n=0

c7(n)Xn
7 . (6.6)

Proof. In Equation (5.15) we showed that z7 satis�ed a second order linear di�erential
equation with respect to X7. Using (6.6) we �nd that the �rst and second derivatives
of z7 are as follows:

z′7 =
∞∑
n=0

nc7(n)Xn−1
7

and

z′′7 =
∞∑
n=0

n(n− 1)c7(n)Xn−2
7 .

Substituting these into the di�erential equation (5.15) gives

X7(1− 26X7 − 27X2
7 )
∞∑
n=0

n(n− 1)c7(n)Xn−2
7

+ (1− 39X7 − 54X2
7 )
∞∑
n=0

nc7(n)Xn−1
7 − 2(1 + 3X7)

∞∑
n=0

c7(n)Xn
7 = 0.

After some computation we deduce the recurrence relation

[n(n+ 1) + (n+ 1)]c7(n+ 1)− [26n(n− 1) + 39n+ 2]c7(n)

− [27(n− 1)(n− 2) + 54(n− 1) + 6]c7(n− 1) = 0.

This simpli�es to (6.5) and our proof is complete.
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The values of c7(n) for 0 ≤ n ≤ 10 are

1

2

22

336

6006

117348

2428272

52303680

1160427510

26337699740

608642155660.

As con�rmation of this result, the X7 and z7 in the power series (6.6) can be expanded
respectively in q series as follows:

X7 = q − 9 q2 + 30 q3 − 15 q4 − 240 q5 + 978 q6 − 1463 q7 − 2361 q8

+ 18201 q9 − 42800q10 +O
(
q11
)

(6.7)

and

z7 = 1 + 2 q + 4 q2 + 6 q4 + 2 q7 + 8 q8 + 2 q9 +O
(
q11
)
. (6.8)

Substituting the q-expansions into (6.6) and comparing expressions as far as q10 gives
us a check. Experimental results showed that the terms of the sequence are integers
but this does not constitute a proof. However, we will now give a simple proof for
this.

Theorem 6.2. The sequence {c7(n)} de�ned by the recurrence relation (6.5), that is

(n+ 1)2c7(n+ 1) =(26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1)

for n ≥ 0,

with initial conditions

c7(−1) = 0, c7(0) = 1,

takes only integer values.
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Proof. If we expand (6.6) in powers of X7 we have

z7 =
∞∑
n=0

c7(n)Xn
7 = c7(0) + c7(1)X7 + c7(2)X2

7 + · · · . (6.9)

We can substitute (6.7) into (6.9) to obtain

z7 = c7(0) + c7(1)(q − 9q2 + 30q3 − · · · ) + c7(2)(q − 9q2 + 30q3 − · · · )2 + · · · .(6.10)

But we have a q-expansion of z7 (6.8) hence equating (6.8) and (6.10) gives us

1 + 2q + 4q2 + 6q4 + 2q7 + 8q8 + 2q9 + · · ·
= c7(0) + c7(1)(q − 9q2 + 30q3 − · · · ) + c7(2)(q − 9q2 + 30q3 − · · · )2 + · · · .

We equate coe�cients as follows: the coe�cient for the constant term is

c7(0) = 1

so c7(0) is an integer. The coe�cient the q term is

c7(1) = 2.

Now the coe�cients of q2, q3 and q4 are found by

4 = −9c7(1) + c7(2)

0 = 30c7(1)− 18c7(2) + c7(3)

6 = −15c7(1) + 141c7(2)− 27c7(3) + c7(4)

giving

c7(2) = 22

c7(3) = 336

c7(4) = 6006.

In general, equating the coe�cients of qn produces an integer relation among
c7(1), c7(2), . . . , c7(n) where the coe�cient of c7(n) is 1. Then using induction on n
the terms c7(n) will be integers.

The signi�cance of this result is twofold. First, it is not obvious from the recurrence
relation that we would see an integer sequence. Equation (6.5) gives

c7(n+ 1) =
1

(n+ 1)2
(
(26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1)

)
.
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Since (n+ 1)2 is in the denominator, we would expect c7(n+ 1) to be a rational num-
ber with denominator something like ((n+ 1)!)2 but we �nd integers. The proof that
the sequence must be integers is short but there was a lot of background involved.
We needed Ramanujan's Eisenstein series, theta functions and di�erential equations.
Secondly, recurrence relations with polynomial coe�cients that are integer valued are
fairly rare. The ones that are known have interesting properties particularly con-
gruences and parametrization by modular forms. So there is interest in �nding new
integer sequences of this type.

If we expand Z7 as a power series in X7 using (3.16) the three-term cubic recur-
rence relation discovered by S. Cooper [24] is revealed.

Theorem 6.3. Let Z7 and X7 be de�ned by (3.14) and (3.15). Let {t7(n)} be the

sequence de�ned by the recurrence relation

(n+ 1)3t7(n+ 1) = (2n+ 1)(13n2 + 13n+ 4)t7(n) + 3n(9n2 − 1)t7(n− 1) (6.11)

for n ≥ 0

with initial conditions t7(0) = 1. Alternatively, let {t7(n)} be the sequence de�ned by

the binomial sum

t7(n) =
n∑
k=0

(
n

k

)2(
2k

n

)(
n+ k

k

)
. (6.12)

In a neighbourhood of q = 0 the generating function is

Z7 =
∞∑
n=0

t7(n)Xn
7 . (6.13)

Proof. The proof is similar to Theorem 6.1. We substitute (6.13) and its derivatives
into (5.19). The details can be found in [24]. As a check we substitute q expansions
for Xn

7 and Z7 into (6.13) and compare expressions.

The numbers in {t7(n)} are all integers which again is surprising as the recurrence
relation would suggest rational numbers since there is division by (n + 1)3. Two
proofs are given in [24]. The �rst proof is similar to the proof in Theorem 6.2. The
second proof relies on the fact that {t7(n)} has a sum of binomial coe�cients which
by de�nition are integers. Since no binomial sum has yet been found for the sequence
{c7(n)} this short con�rming proof was not available to us.

We state without proof that the generating function satis�es an interesting functional
equation.
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Theorem 6.4. Let {c7(n)} and {t7(n)} be sequences de�ned by (6.5) and (6.11) and
let g and f be the generating functions given by

g(y) =
∞∑
n=0

t7(n)yn

and

f(y) =
∞∑
n=0

c7(n)yn.

Then in a neighbourhood of y = 0

1

(1 + 4y)2
g

(
y

(1 + 4y)3

)
=

1

(1 + 2y)2
g

(
y2

(1 + 2y)3

)
. (6.14)

By taking the square root of g(y) we obtain

1

1 + 4y
f

(
y

(1 + 4y)3

)
=

1

1 + 2y
f

(
y2

(1 + 2y)3

)
. (6.15)

Proof. The functional equation (6.14) was established by S. Cooper and D. Ye [28] and
the functional equation for (6.15) is obtained by taking square roots of (6.14). This
is possible since Z7 = z27 by Theorem 3.7 where z7 and Z7 are the power series (6.6)
and (6.13), respectively.

6.3.2 A second new sequence {u7(n)}

Our last series expansion in this section expands w7 as a power series in y7. This is
again a new result.

For comparison we state the corresponding level 5 results found in Table 2 of [18]
as follows:

η51
η5

=
∞∑

n=−∞

u5(n)

(
η65
η61

)n
where ηm is de�ned by (2.13). The power series expansion satis�es a three-term
recurrence relation with cubic polynomials given by

(n+ 1)3u5(n+ 1) = −(2n+ 1)(11n2 + 11n+ 5)u5(n)− 125n3u5(n− 1)

for n ≥ 0
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with initial condition u5(0) = 1. A solution to the recurrence relation in terms of
binomial coe�cients is given by

u5(n) =
n∑
k=0

(−1)n+k
(
n

k

)3(
4n− 5k

3n

)
.

Motivated by the results of level 5 we looked to see if there was a similar relationship
at level 7. We did �nd a relationship. However, it is a �ve-term quartic recurrence
relation, and no binomial sum has yet been found.

Theorem 6.5. Let y7 and w7 be de�ned by (3.11) and (3.12). Let {u7(n)} be the

sequence de�ned by the �ve-term quartic recurrence relation

(n+ 1)4u7(n+ 1) = −(26n4 + 52n3 + 58n2 + 32n+ 7)u7(n)

− (267n4 + 268n2 + 18)u7(n− 1)

− (1274n4 − 2548n3 + 2842n2 − 1568n+ 343)u7(n− 2)

− 2401(n− 1)4u7(n− 3) (6.16)

for n ≥ 0

with initial conditions u7(0) = 1, u7(−1) = u7(−2) = u7(−3) = 0. Then in a neigh-

bourhood of q = 0 the generating function is

y7 =
∞∑

n=−∞

u7(n)wn7 . (6.17)

Using eta product notation we can write (6.17) as

η71
η7

=
∞∑

n=−∞

u7(n)

(
η47
η41

)n
.

Proof. The variables y7 and z7 are algebraically related and the variables w7 and X7

are also algebraically related as we see from Theorems 3.8 and 3.10. Therefore, y7
satis�es a di�erential equation with respect to w7, has a power series solution and
gives rise to the recurrence relation satis�ed by u7(n).
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The values of u7(n) for 0 ≤ n ≤ 17 are as follows:

1

−7

42

−231

1155

−4998

15827

−791

−566244

6506955

−53524611

369879930

−2218053747

11306008875

−43772711220

55203364377

172838094533

−16542312772356.

As con�rmation the y7 and w7 in the power series (6.17) can be expanded respectively
in q series as follows:

y7 = q + 4q2 + 14q3 + 40q4 + 105q5 + 252q6 + 574q7 + 1236q8 + 2564q9 + 5124q10+

+ 9948q11 + 18788q12 + 34685q13 + 62664q14 + 111132q15 + 193672q16 + 332325q17

+ 561996 q18 +O(q19)

and

w7 = 1− 7 q + 14 q2 + 7 q3 − 49 q4 + 21 q5 + 35 q6 + 42 q7 − 56 q8 − 119q9 + 105q10

− 70q11 + 147q12 + 147q13 − 133q14 − 168q15 − 231q16 + 252q17 − 154q18 +O(q19).

Substituting q-expansions of y7 and w7 into (6.17) and comparing expressions up to
q10 gives us a check. As with the previous two sequences, this sequence is integer
valued and for the same reasons as we have explained before. However, we notice
the erratic size and irregular sign change. These will be explained by the asymptotic
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formulae in Chapter 8.

The weight 2 sequence {t7(n)} is found as A183204 in the On�Line Encyclopedia
of Integer Sequences ( OEIS) [57]. At the time of writing neither the weight 1 se-
quence {c7(n)} nor the weight 3 sequence {u7(n)} are found in OEIS.
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Chapter 7

Clausen's identity

An interesting identity attributed to the Danish mathematician T.Clausen in 1828 is
that the square of a particular 2F1 hypergeometric function with certain parameters,
de�ned in Equation (6.1), can be expressed in terms of a 3F2 hypergeometric function.
This can be found in Question 13 of [1, Ch. 2] as follows:{

2F1

(
a, b

a+ b+ 1
2

;x

)}2

= 3F2

(
2a, 2b, a+ b

2a+ 2b, a+ b+ 1
2

;x

)
. (7.1)

Clausen's identity can be combined with the quadratic transformation formula

2F1

(
2a, 2b

a+ b+ 1
2

;x

)
= 2F1

(
a, b

a+ b+ 1
2

; 4x(1− x)

)
(7.2)

to give {
2F1

(
2a, 2b

a+ b+ 1
2

;x

)}2

= 3F2

(
2a, 2b, a+ b

2a+ 2b, a+ b+ 1
2

; 4x(1− x)

)
. (7.3)

There are many applications of Clausen's identity. For example in 1914 S.Ramanujan
used it to derive 17 series for 1

π
; see [52]. In this thesis we compare the classical case,

known as level 4, with level 3 and just note that we have a Clausen analogue for
level 7.

7.1 Classical case: level 4

The classical case, now known as level 4, was used by Jacobi [41] in 1829. The
functions z and x are given in terms of q namely,

z = 2F1

(
1
2
, 1

2

1
;x

)
= ϕ2(q)

and

x =
16qψ4(q2)

ϕ4(q)

where ϕ and ψ are de�ned by (2.7) and (2.9). See [9], [10] and [22] for proofs of this
result.
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7.2 Level 3 case

In a similar fashion we look at a Clausen type analogue for Z3. Using Equations (3.10), (6.3)
and (6.4), that is

z3 = 2F1

(
1
3
, 2

3

1
;x

)
and

Z3 = 3F2

(
1
3
, 2

3
, 1

2

1, 1
; 4x(1− x)

)
and using the identity in Equation (3.5) we obtain{

2F1

(
1
3
, 2

3

1
;x3

)}2

= 3F2

(
1
3
, 2

3
, 1

2

1, 1
; 4x3(1− x3)

)
. (7.4)

Where (7.4) is an instance of (7.3) with a = 1
6
and b = 1

3
.

7.3 Level 7 case

At level 7 we express z7 and Z7 in terms of a power series (6.6) and (6.13). That is

Z7 =
∞∑
n=0

t7(n)Xn
7

and

z7 =
∞∑
n=0

c7(n)Xn
7 .

We recall that the recurrence relations of Equations (6.5) and (6.11) are

(n+ 1)2c7(n+ 1) =(26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1)

for n ≥ 0,

with initial conditions

c7(−1) = 0, c7(0) = 1

and

(n+ 1)3t7(n+ 1) = (2n+ 1)(13n2 + 13n+ 4)t7(n) + 3n(9n2 − 1)t7(n− 1)
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with initial conditions

t7(0) = 1.

To show a Clausen type analogue we use (3.16)

z27 = Z7

to obtain (
∞∑
n=0

c7(n)Xn
7

)2

=
∞∑
n=0

t7(n)Xn
7 .

In this case it is interesting that the square of one series is equal to another series.
It is not obvious. Levels 3 and 4 are special cases of Clausen's formula in which we
can vary the parameter. Levels 5 and 6 also have Clausen analogues that include
parameters so we were interested to know if this is the case for level 7. A question
for further research is:
Are we able to generalize the level 7 case to include a parameter?
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Chapter 8

Asymptotics

8.1 Asymptotics

In this section we look at the asymptotic behaviour of our recurrence relations.
Asymptotic analysis is a method of describing limiting behaviour. We want to �nd a
function that best approximates a term in a recurrence relation at a particular large
value of n. We start by looking at a second order recurrence relation with constant
coe�cients of the form

sn+1 = αsn + βsn−1. (8.1)

The standard method is to try a solution of the form

sn = rn. (8.2)

When we substitute Equation (8.2) into Equation (8.1) we obtain

rn+1 = αrn + βrn−1.

Now we divide both sides by rn−1 giving

r2 = αr + β.

We solve the characteristic equation to give two roots r1 and r2. Assuming r1 6= r2
the general solution to the recurrence relation is given by

sn = γ1r
n
1 + γ2r

n
2

where γ1 and γ2 are constant coe�cients. We can �nd the values of γ1 and γ2 by
using the initial conditions which are the �rst two terms in the sequence. That is
either s0 and s1 or s−1 and s0. In the case of repeated roots we �nd the solution is

sn = γ1r
n
1 + γ2nr

n
1 .

If we consider our prototype, the Fibonacci sequence where

Fn+1 = Fn + Fn−1, F−1 = 0, F0 = 1
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then solve the quadratic equation

r2 = r + 1.

We determine the two roots

r1 =
1 +
√

5

2

and

r2 =
1−
√

5

2
.

We �nd γ1 and γ2 by using the initial conditions so

γ1
r1

+
γ2
r2

= 0

and

γ1 + γ2 = 1.

Solving for γ1 and γ2 gives

γ1 =
1√
5

(
1 +
√

5

2

)

and

γ2 =
1√
5

(
1−
√

5

2

)
.

So the solution to the recurrence relation is

Fn = γ1r
n
1 + γ2r

n
2

=
1√
5

(
1 +
√

5

2

)(
1 +
√

5

2

)n

+
1√
5

(
1−
√

5

2

)(
1−
√

5

2

)n

=
1√
5

(
1 +
√

5

2

)n+1

+
1√
5

(
1−
√

5

2

)n+1

.
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If we just take the dominant term we see Fn grows exponentially and has an asymp-
totic relationship

Fn ∼
1√
5

(
1 +
√

5

2

)n+1

as n→∞.

More generally we write

f(n) ∼ g(n) as n→∞

to mean

lim
n→∞

f(n)

g(n)
= 1.

8.2 Birkho�-Trjitzinsky method for asymptotic expansions

So far we have talked about recurrence relations with constant coe�cients. We are
now going to look at more general recurrence relations where the coe�cients are
algebraic functions or special functions such as the hypergeometric function. Wimp
and Zeilberger [61] give a good account of the development of a technique for �nding
the asymptotic expansion of a recurrence relation for a sequence by the Birkho��
Trjitzinsky method. This method is to try a solution in the form

sn ∼ Cnαrn
(

1 +
a1
n

+
a2
n2

+
a3
n3

+ · · ·
)
.

This is a generalization of our prototype example for the Fibonacci sequence above
where we raised the root to the power of n and in that case we had constant coe�-
cients. We look at several asymptotic expansions. First, the sequence {t7(n)} is used
as an example of the Birkho��Trjitzinsky method. This will be followed by our best
approximations for the new sequences {c7(n)} and {u7(n)}.

8.3 Asymptotic behaviour of the sequence {t7(n)}

In his paper [38], Hirschhorn determined the asymptotic behaviour for {t7(n)} in the
three-term cubic recurrence relation from Equation (6.11). Hirschhorn's proof relies
on the fact that this equation has a binomial sum

t7(n) =
n∑
k=0

(
n

k

)2(
2k

n

)(
n+ k

k

)
.

59



He showed that

tn ∼
1

4

(
3

πn

) 3
2

27n
(

1− 65

144n
+

3865

41472n2
− 111727

17915904n3
+ · · ·

)
, as n −→∞

where the dominant term is given by

tn ∼
1

4

(
3

πn

) 3
2

27n as n −→∞.

8.4 Asymptotic behaviour of the sequence {c7(n)}

We have a similar type of recurrence relations in Equation (6.5). However, we have
no binomial sum but we consider whether there might be asymptotic behaviour for
{c7(n)} in this equation of the form

cn ∼ Cnαrn
(

1 +
a1
n

+
a2
n2

+
a3
n3

+ · · ·
)

where C, α and r are constants to be determined, the correction term is
(
1 + a1

n
+ . . .

)
and n ≥ 1.

The following conjecture is the asymptotic expansion we found for the sequence
{c7(n)} and in the following subsection we are going to explain how we found these
parameters.

Conjecture 8.1. Let n be a positive integer

cn ∼ Cn−
3
2 27n

(
1− 215

1008n
− 1265

290304n2 + 4683055
877879296n3 + · · ·

)
as n→∞, where C ≈ 0.09552.

8.4.1 Determining r and α

We determine r and α by the Birkho��Trjitzinsky method as outlined by Wimp and
Zeilberger in [61]. We start with recurrence relation (6.5)

(n+ 1)2c7(n+ 1) = (26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1) (8.3)

with initial conditions c7(−1) = 0, c7(0) = 1 and assume the asymptotic formula

cn ∼ Cnαrn
(

1 +
a1
n

+
a2
n2

+
a3
n3

+ · · ·
)
. (8.4)
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We substitute the expansion of the ansatz (8.4), that is the starting equation, into
the recurrence relation (8.3) to obtain

(n+ 1)2C(n+ 1)αrn+1

(
1 +

a1
n+ 1

+ · · ·
)

− (26n2 + 13n+ 2)Cnαrn
(

1 +
a1
n

+ · · ·
)

− 3(3n− 1)(3n− 2)C(n− 1)αrn−1
(

1 +
a1

n− 1
+ · · ·

)
= 0

and divide through by Crn−1

(n+ 1)α+2r2
(

1 +
a1

n+ 1
+ · · ·

)
− (26n2 + 13n+ 2)nαr

(
1 +

a1
n

+ · · ·
)

− 3(3n− 1)(3n− 2)(n− 1)α
(

1 +
a1

n− 1
+ · · ·

)
= 0.

Then divide by n2+α and put x = 1
n
to obtain

(1 + x)α+2r2
(

1 +
a1x

1 + x
+ · · ·

)
− (26 + 13x+ 2x2)r (1 + a1x+ · · · )

− 3(−3 + x)(−3 + 2x)(1− x)α
(

1 +
a1x

1− x
+ · · ·

)
= 0.

We expand this in powers of x to give

(r2 − 26r − 27) + (r2a1 + (α + 2)r2 − 26ra1 − 13r + 27α + 27− 27a1)x+O(x2) = 0.

Now working with the constant term we solve the quadratic equation

r2 − 26r − 27 = 0 (8.5)

to get

r = 27 or r = −1.

Now to determine α we set the coe�cient of x to zero

(r2 − 26r − 27)a1 + (α + 2)r2 − 13r + 27α + 27 = 0
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and using (8.5) we �nd

(α + 2)r2 − 13r + 27α + 27 = 0.

Now using (8.5) again

α = −2r2 − 13r + 27

r2 + 27

= −2(26r + 27)− 13r + 27

26r + 27 + 27

= −3(13r + 27)

2(13r + 27)

= −3

2
.

8.4.2 Numerical con�rmation of α

We want a quick numerical veri�cation of the α that we found in the previous section.
Using the dominant term from Equation (8.4)

cn
27n
≈ Cnα

we proceed by taking logarithms of both sides to obtain

log
cn

27n
≈ logC + α log n.

Now replace n with 2n and subtract the old equation from the new

log
c2n

272n
− log

cn
27n

≈ logC + α log 2n− logC − α log n.

This simpli�es to

log
c2n

27ncn
≈ α log

2n

n
.

Solving for α gives

α ≈
log c2n

27ncn

log 2
.

A numerical calculation in Maple taking n = 2000 gives α = −1.49992 which is in
strong agreement with α = −3

2
.
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8.4.3 Determining the constant C

We want to �nd an estimate for the constant term C. This is hard but we follow the
approach taken by Wimp and Zeilberger in [61] using

C ≈ cnn
3
2

27n
. (8.6)

However, this method is only accurate to O( 1
n
). A better method to use is with �nite

di�erences. We de�ne a di�erence operator.

De�nition 8.2. The di�erence operator 4, where f : R→ R, is de�ned by

4f(n) = f(n+ 1)− f(n).

By mathematical induction we can apply the operator k times to give

4kf(n) =
k∑
j=0

(
k

j

)
(−1)jf(n+ k − j).

Suppose we have a function g with an asymptotic expansion given by

g(n) ∼ c0 +
c1
n

+
c2
n2

+
c3
n3

+ · · · as n→∞.

If we multiply both sides by n2 we get

n2g(n) ∼ c0n
2 + c1n+ c2 +

c3
n

+ · · · as n→∞.

Applying the di�erence operator 42 gives us

42(n2g(n))

2!
∼ c0 +

c3
n(n+ 1)(n+ 2)

+ · · ·

∼ c0 +O

(
1

n3

)
as n→∞.

This gives a better approximation to C than (8.6) because of the smaller error term.
We can estimate c0 to high accuracy more generally by

4k(nkg(n))

k!
∼ c0 +O

(
1

nk+1

)
as n→∞.

Now using Equation (8.6) we estimate the constant

4k

(
n

3
2
+kcn

27nk!

)
∼ C

(
1 +O

(
1

nk+1

))
as n→∞. (8.7)

Zeilberger has the following to say about the method we used [68]:

63



The Birkho��Trjitzinsky method su�ers from one drawback. It only does
the asymptotics up to a multiplicative constant C. But nowadays this
is hardly a problem. Just crank-out the �rst ten thousand terms of the
sequence using the very recurrence whose asymptotics you are trying to
�nd, not forgetting to furnish the few necessary initial conditions, and
then estimate the constant empirically. If you are lucky, then Maple
can recognize it in terms of �famous� constants like e and π, by typing
identify(C).

By taking n = 10, 000 and k = 40 we �nd

C =0.09552230526812671465130791078702962567279466665100717986699

4823491765926452453145767581209397218144601400343835459078543

716038032131869546216944

to 144 decimal places. How do we know this is correct? We look at the error for
di�erent values of n. Let us denote the error when the kth order di�erence is used to
approximate C in (8.7) by

En,k = O

(
1

nk+1

)
.

We now compare errors when the value of n is doubled.

E2n,k

En,k
≈

b
(2n)k+1

b
nk+1

, where b is a constant of proportionality

=
1

2k+1
.

If we let k = 40 then

1

2k+1
=

1

241
≈ 1

1012
.

We expect the decimal places to increase by about 12 places as n doubles. We found

n decimal places in agreement di�erence
1,250 107
2,500 119 12
5,000 132 13
10,000 144 12
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For n = 10, 000 we checked for 170 decimal places and on the basis of the preced-
ing results we conclude that 144 decimal places in agreement for n = 10, 000 is correct.

Hirschhorn in [38] found the asymptotic behaviour of the sequence {t7(n)} (6.11).

He was able to prove a nice explicit value for C of 1
4

(
3
π

) 3
2 . We have tried a number of

things to identify C for {c7(n)} (6.5). We have tried the Maple function "identify",
scaled by π and tried to see if it was an algebraic number. So far it has resisted all
attempts at identi�cation. So for now with reference to the above quote by Zeilberger
we have not been "lucky" and Maple is unable to recognize C. We tried to �nd an
explicit value for C in Wolfram Alpha [62] without success. We also did an advanced
search on the inverse calculator at http://isc.carma.newcastle.edu.au/advanced
that produced the result "Wow, really found nothing".

8.4.4 The correction term

We are going to assume there is a correction term since other similar sequences have
them. Now c7(n) satis�es the recurrence relation (6.5)

(n+ 1)2c7(n+ 1)− (26n2 + 13n+ 2)c7(n)− (27n2 − 27n+ 6)c7(n− 1) = 0.

which we can rewrite as(
1 +

1

n

)2

c7(n+ 1)−
(

26 +
13

n
+

2

n2

)
c7(n)−

(
27− 27

n
+

6

n2

)
c7(n− 1) = 0.

(8.8)

Now let us suppose

cn = Cn−
3
2 27n

(
1 +

a1
n

+
a2
n2

+
a3
n3

+ · · ·
)
.

We can now substitute cn into Equation (8.8) to obtain(
1 +

1

n

)2

C(n+ 1)−
3
2 27n+1

(
1 +

a1
n+ 1

+
a2

(n+ 1)2
+

a3
(n+ 1)3

+ · · ·
)

−
(

26 +
13

n
+

2

n2

)
Cn−

3
2 27n

(
1 +

a1
n

+
a2
n2

+
a3
n3

+ · · ·
)

−
(

27− 27

n
+

6

n2

)
C(n− 1)−

3
2 27n−1

(
1 +

a1
n− 1

+
a2

(n− 1)2
+

a3
(n− 1)3

+ · · ·
)

= 0.
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We now divide by C27n and multiply by n3/2 to get(
1 +

1

n

) 1
2

27

(
1 +

a1
n+ 1

+
a2

(n+ 1)2
+

a3
(n+ 1)3

+ · · ·
)

−
(

26 +
13

n
+

2

n2

)(
1 +

a1
n

+
a2
n2

+
a3
n3

+ · · ·
)

−
(

1− 1

n

)− 3
2 1

27

(
27− 27

n
+

6

n2

)(
1 +

a1
n− 1

+
a2

(n− 1)2
+

a3
(n− 1)3

+ · · ·
)

= 0. (8.9)

Now we make a change of variable. Let

1

n
= u

so

1

n± 1
=

u

1± u
.

Since the following expansions hold

(1 + u)
1
2 = 1 +

u

2
− u2

8
+
u3

16
− · · ·

1 +
a1u

1 + u
+

a2u
2

(1 + u)2
+

a3u
3

(1 + u)3
+ · · · = 1 + a1u+ (−a1 + a2)u

2 + (a1 − 2a2)u
3 + · · ·

and

(1− u)−
3
2 = 1 +

3u

2
+

15u2

8
+

35u3

16
+ · · ·

1 +
a1u

1− u
+

a2u
2

(1− u)2
+

a3u
3

(1− u)3
+ · · · = 1 + a1u+ (a1 + a2)u

2 + (a1 + 2a2 + a3)u
3 + · · · .

Equation (8.9) can be expanded to

27(1 +
u

2
− u2

8
+
u3

16
+ · · · )(1 + a1u+ (−a1 + a2)u

2 + (a1 − 2a2)u
3 + · · · )

−
(
26 + 13u+ 2u2

) (
1 + a1u+ a2u

2 + a3u
3 + · · ·

)
− (1 +

3u

2
+

15u2

8
+

35u3

16
+ · · · )

(
1− u+

6

27
u2
)

× (1 + a1u+ (a1 + a2)u
2 + (a1 + 2a2 + a3)u

3 + · · · ) = 0. (8.10)
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Equation (8.10) is a linear triangular system for a1, a2, a3.... We solve this by setting
the coe�cients of the powers of u equal to zero.

−28a1 −
215

36
= 0

a1 = − 215

1008
.

Similarly, considering coe�cients of u2 and u3 we �nd respectively

a2 = − 1265

290304
,

a3 =
4683055

877879296
.

We are able to calculate as many terms as we want. This works because C cancels out.

8.5 Asymptotic behaviour of the sequence {u7(n)}

The recurrence relation for Equation (6.16) gives us an integer sequence that moves
in a seemingly haphazard fashion. We looked at the sign change by looking at the
asymptotics to see if there was a pattern but no pattern was found.

8.5.1 Analytic determination of r and α

We start with our recurrence relation

(n+ 1)4u7(n+ 1) = −Pu7(n)−Qu7(n− 1)−Ru7(n− 2)− Su7(n− 3)

where

P = 26n4 + 52n3 + 58n2 + 32n+ 7,

Q = 267n4 + 268n2 + 18,

R = 1274n4 − 2548n3 + 2842n2 − 1568n+ 343,

S = 2401(n− 1)4 (8.11)

with initial conditions u7(0) = 1 and u7(−1) = u7(−2) = u7(−3) = 0.
We use the ansatz

u7(n) ∼ Cnαrn (8.12)
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and substitute the expansion of (8.12) into the recurrence relation (8.11) to give us
a polynomial in α having four complex repeated roots

(n+ 1)4C(n+ 1)αrn+1 + PCnαrn +QC(n− 1)αrn−1

+RC(n− 2)αrn−2 + SC(n− 3)αrn−3 = 0. (8.13)

Now dividing (8.13) through by Crn−3 gives us

(n+ 1)α+4r4 + Pnαr3 +Q(n− 1)αr2 +R(n− 2)αr + S(n− 3)α = 0. (8.14)

Now we divide (8.14) by n4+α and put x = 1
n
to obtain

(1 + x)4+α r4+
(
7x4 + 32x3 + 58x2 + 52x+ 26

)
r3+

(
18x4 + 268x2 + 267

)
r2 (1− x)α

+ 49
(
7x4 − 32x3 + 58x2 − 52x+ 26

)
r (1− 2x)α + 2401 (−1 + x)4 (1− 3x)α = 0.

Expand in powers of x to give

r4 + 26r3 + 267r2 + 1274r + 2401

+
(
(4 + α) r4 + 52r3 − 267r2α− 2548rα− 2548r − 7203α− 9604

)
x

+

((
α2

2
+

7α

2
+ 6

)
r4 + 58r3 + 267r2

(
α2

2
− α

2

)
+ 268r2 + 1274r

(
2α2 − 2α

)
+5096rα + 2842r +

21609α2

2
+

36015α

2
+ 14406

)
x2 +O

(
x3
)
.

Now working with the constant term

r4 + 26r3 + 267r2 + 1274r + 2401 = 0

and factoring gives

(r2 + 13r + 49)2 = 0. (8.15)

Solving the quartic equation gives

r = −13

2
± 3i

2

√
3 (8.16)

with multiplicity 2.
Next we set the coe�cient of x to zero:

(4 + α) r4 + 52r3 − 267r2α− 2548rα− 2548r − 7203α− 9604 = 0.
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Factoring gives (
r2 + 13r + 49

) (
αr2 − 13αr + 4r2 − 147α− 196

)
.

Using (8.15) we see the coe�cient of x is indeed zero.

Similarly, we set the coe�cient of x2 to zero:(
α2

2
+

7α

2
+ 6

)
r4 + 58r3 + 267r2

(
α2

2
− α

2

)
+ 268r2 + 1274r

(
2α2 − 2α

)
+ 5096rα + 2842r +

21609α2

2
+

36015α

2
+ 14406 = 0.

We have a quartic in r and since by (8.15) r2 = −13r − 49 we can rewrite

r2 = −13r − 49

r3 = rr2 = r(−13r − 49)

r4 = (−13r − 49)2.

Substituting for r4, r3, r2 and collecting terms leads to a quadratic in terms of α where(
1

2
(−13r − 49)2 +

1625r

2
+ 4263

)
α2 +

(
7

2
(−13r − 49)2 +

8567r

2
+ 24549

)
α

+ 6 (−13r − 49)2 + 58r (−13r − 49)− 642r + 1274 = 0. (8.17)

Substituting the complex conjugate roots (8.16) into (8.17) and factoring gives us

3

2

(
71± 39i

√
3
)

(3α + 5) (3α + 4) = 0.

Solving for α we obtain

α1 = −5

3
and α2 = −4

3
. (8.18)

8.5.2 Numerical investigation

Now u7(n) is a liner combination of the terms of the form

u7(n) ∼ nαrn
(

1 +
a1
n

+
a2
n2

+
a3
n3

+ · · ·
)
. (8.19)

We used Kauers' software program for Mathematica [42] to �nd the possibilities
for (8.19) and to compute further terms. This program uses the Birkho��Trjitzinsky
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method. We used the command Asymptotics which takes the recurrence relation as
the input and returns the dominant term and all its asymptotic solutions. We have
also computed the �rst correction term.

n−
5
3

(
1

2
(−13− 3i

√
3)

)n(
1 +

5(−10359i+ 2579
√

3)

162(−71i+ 39
√

3)n
+

4(−125526767i+ 56300217
√

3)

15309(−239i+ 2769
√

3)n2

)
,

n−
4
3

(
1

2
(−13− 3i

√
3)

)n(
1 +

14(−1413i+ 409
√

3)

81(−71i+ 39
√

3)n
+

4(−52615987i+ 32152017
√

3)

15309(−239i+ 2769
√

3)n2

)
,

n−
5
3

(
1

2
(−13 + 3i

√
3)

)n(
1 +

5(10359i+ 2579
√

3)

162(71i+ 39
√

3)n
+

4(125526767i+ 56300217
√

3)

15309(239i+ 2769
√

3)n2

)
,

n−
4
3

(
1

2
(−13 + 3i

√
3)

)n(
1 +

14(1413i+ 409
√

3)

81(71i+ 39
√

3)n
+

4(52615987i+ 32152017
√

3)

15309(239i+ 2769
√

3)n2

)
.

The numerical results are in agreement with the previous subsection. The terms n−5/3

and n−4/3 are in agreement with α1 and α2 in (8.18). The term 1
2
(−13±3i

√
3) is the

value for r in (8.16) and is responsible for the sign changes in the sequence {u7(n)}.

8.5.3 Determining the constant C

We use the ansatz (8.4) again to try to determine the constant C. However, the terms
of the sequence alternate in sign erratically

{1,−7, 42,−231, 1155,−4998, 15827,−791,−566244, 6506955,−53524611,

369879930,−2218053747, 11306008875,−43772711220, 55203364377,

172838094533,−16542312772356, . . .}

and involve complex conjugates. We know α and r from using Kauer's software but
determining C is di�cult. We are unable to use the method of di�erence operators
that we used in the three-term quadratic recurrence relation in (6.5) since the asymp-
totic expansion involves fractional powers. So we tried a graphical approach using
roots rn where

r1, r2 =
1

2
(−13± 3i

√
3).

Polar form gives us

r = 7e±iα
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where

α = arctan

(
3
√

3

13

)
± π.

Both roots occur in the asymptotic formula where the dominant term is

un ∼
c1

n
4
3

7neniα +
c2

n
4
3

7ne−niα. (8.20)

We must have c1 and c2 as complex conjugates to produce real values so

c1 = ceiβ and c2 = ce−iβ.

We want to remove the growth factors for our graphical analysis so we multiply (8.20)
by n

4
3/7n to give

n
4
3un
7n

∼ c
(
eni(α+iβ) + e−ni(α−iβ)

)
.

Using the trigonometric identity

cos(x) =
eix + e−ix

2

we obtain

n
4
3un
7n

∼ A cos(n(α + β))

where A = 2c.

Using Maple we plotted the terms for n from 900 to 910, scaled by nαrn to remove the
growth factor. In �gure 8.1, n is represented by dots. We want to �nd the best curve
to �t these points to give us a rough estimate for the amplitude A and the phase β.
We were able to use the method of least squares to �nd the values of A and β that
minimizes the expression

f =
950∑

n=900

(
A cos

(
n

(
arctan

(
3
√

3

13

)
− π

)
+ β

)
− n

4
3 7−nu7(n)

)2

.

The result is A = 6.502807770 and β = −1.083913253. Our best estimate for the
asymptotics for the sequence {u7(n)} is then

un ∼ 6.502807770n−
4
3 7n cos (n (α− 1.083913253)) .

The amplitude A represents the constant C by the graphical approach. We were
unable to obtain an analytical proof for the constant C.
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Figure 8.1: Determination of Amplitude A and phase shift β

8.6 Some references to relevant asymptotic methods in the literature

An excellent guide to methods of asymptotics is given by Odlyzko [50]. Of particular
interest is section 9 where he discusses some limitations of the Birkho��Trjitzinsky
method. In another paper Wong and Li [63] discuss the lack of knowledge of the
asymptotic theory of second-order linear di�erence equations. They give reasons
for this, one being a criticism of Birkho�'s work as being long and complicated.
They also give references to works that make this method more accessible including
their own work. However, Wimp and Zeilberger [61] give an extensive coverage of
the Birkho��Trjitzinsky method with a number of useful examples including the
asymptotics for Apéry's sequence. Zeilberger has developed a software package for
Maple that calculates asymptotics [68]. Kauers also developed a software package
but this time for Mathematica that computes the asymptotic expansion of solutions
for recurrence equations [42]. Apéry's work on the irrationality of ζ(3) is listed as an
application when Kooman and Tijdeman [45] discuss Kooman's thesis "The survey
of convergence properties of linear recurrence sequences".
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Chapter 9

Congruences

We look at congruences associated with modular forms of level 7. First, in 1878
Édouard Lucas [48] showed a way to express binomial coe�cients

(
m
n

)
modulo a

prime in terms of the base p expansion of the integers m and n where p is prime.
This is know as Lucas' Congruence.

Theorem 9.1. If

m = m0 +m1p+ · · ·+mrp
r (mod p)

and

n = n0 + n1p+ · · ·+ nrp
r (mod p)

are the base p expansions of m and n, where p is a prime, then(
m

n

)
≡
(
m0

n0

)(
m1

n1

)
· · ·
(
mr

nr

)
(mod p).

Proof. Proofs can be found in [31, p. 271] and [48].

A similar congruence for the sequence {t7(n)} in Equation (6.12) was given by Malik
and Straub [49]. They showed that

t(n) ≡ t(n0)t(n1) . . . t(nr) (mod p) (9.1)

where

n = n0 + n1p+ · · ·+ nrp
r (mod p)

is the expansion of n base p.
A congruence of the form (9.1) will be said to be a Lucas-type congruence.

We consider an example. In base 7

89 = 1× 72 + 5× 71 + 5× 70 = 1557.
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So the number 89 has a base 7 expansion of 155. Hence

t(89)− t(1)t(5)t(5) ≡ 0 (mod 7).

where

t(89) = 0 (mod 7)

t(1) = 4 (mod 7)

t(5) = 0 (mod 7)

hence

0− 4× 0× 0 ≡ 0 (mod 7).

We considered the sequence {c7(n)} in (6.5) to ascertain whether it satis�es a Lucas-
type congruence like (9.1). We make the following conjecture:

Conjecture 9.2. Let {c7(n)} de�ned by

(n+ 1)2c7(n+ 1) = (26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1) (9.2)

with initial conditions

c7(−1) = 0, c7(0) = 1

be a sequence of integers. Let n = n0+n1p+· · ·+nrpr (mod p) be the base p expansion
of n. Then

c(n) ≡ c(n0)c(n1) . . . c(nr) (mod p)

for all integers n if and only if p = 0 or the primes p are congruent to 1, 2 or 4
modulo 7.

As evidence for this claim, the primes up to 200 were checked numerically. Those
that showed evidence of Lucas-type congruence were checked for all integers n up to
2, 000 and the congruence was found to hold in all cases. The congruence was found
not to hold for any of the other primes.

The consequences of Conjecture (9.2) are twofold. First, the work of Malik and
Straub [49] shows that for certain sequences, where the coe�cients are a binomial
sum, Lucas-type congruences are satis�ed for all primes. We do not know of a for-
mula for Equation (9.2) as the sum of binomial coe�cients so the technique used
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by Malik and Straub [49] is not available to prove this example. Secondly, the se-
quences studied by Malik and Straub [49] have Lucas-type congruences for every
prime whereas the Equation (9.2) satis�es Lucas-type congruences for only certain
primes so this may point to a reason we have not been able to �nd a binomial sum
for the Equation (9.2), indeed there might not be one.

A second type of congruence was conjectured by Chan, Cooper and Sica in [19] where
the coe�cients of certain power series provide numbers that satisfy congruences mod-
ulo certain powers of primes. They proposed a number of conjectures one of which is
related to Equation (6.6). Using z7 de�ned as (3.13) and x7 that we de�ne as (3.15)
with identity (3.16) they deduced (6.6). They conjectured the following congruence
on the coe�cients of (6.6).

Conjecture 9.3. Let {c7(n)} be de�ned in Equation (6.5), then

c7(np) ≡ c7(n) (mod p2)

if and only if p = 0 or the primes p are congruent to 1, 2 or 4 modulo 7.

We notice in both the conjectures that the primes p that are congruent to 1, 2 or 4,
modulo 7 are the squares, that is the quadratic residues, modulo 7.

We looked at the sequence {u7(n)} (6.16) where the primes up to 200 were checked
numerically and none had a Lucas-type congruence of the form (9.1).

We conclude this section by saying Conjectures 9.2 and 9.3 are topics for further
investigation.

75



Chapter 10

Conclusions and further work

10.1 Conclusion

This thesis examined two new integer sequences at level 7. The background needed to
establish these results is given in Chapters 2�5. We began with an historical overview
of theta functions where we looked at the earliest known use of theta functions by
Bernoulli. This was followed by the theta functions that would be needed in this thesis
including Ramanujan's Eisenstein series and theta functions, Dedekind's eta function
and the Borweins' theta functions. A number of identities were used such as Euler's
product identity and Jacobi's triple product then a brief description of the classi�-
cation of modular forms for weight and level was given. Following this background
we gave de�nitions for cubic and septic theta functions and some of their properties
which led on to their derivatives and �nally to di�erential equations and proofs. In
Chapter 6 we gave the main results and proofs and solved di�erential equations to ob-
tain power series which are holonomic functions. That is they are solutions of linear
di�erential equations where coe�cients of these generating functions satisfy linear
recurrence relations of polynomials. It was a surprise that the recurrence relation
produced two integer sequences {c7(n)} and {u7(n)}. In the next three chapters we
examined some of the properties of these sequences. We noted that our new sequence
{c7(n)} and S. Cooper's sequence {t7(n)} are related by Clausen's identity. We looked
at the asymptotic behaviour of each sequence using the Birkho��Trjitzinsky method
employing analytical and numerical processes. Finally, we looked at congruences and
conjectured that the sequence {c7(n)} satis�ed a Lucas congruence for primes p that
are congruent to 0,1,2 or 4, modulo 7.

10.2 Further work

A number of questions arose in the course of our research. We will restate these
together as a summary in one place. The �rst question that remains unanswered was
raised in Chapter 6.

Question 10.1. Is there an explicit formula as sums of binomial coe�cients for c7(n)
similar to the binomial sum for t7(n) found by Zudilin?

The second question that arose was part of our asymptotic investigation of {c7(n)}
in chapter 7.
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Question 10.2. Is there a nice explicit value for the constant C in terms of π or other

known mathematical constants, similar to the constant for t7(n) found by Hirschhorn.

The next question we have regards Clausen's analogue. We saw in the classical case
for level 4 and at level 3 there is a general formula for Clausen's identity that contains
additional parameters.

Question 10.3. We have shown at level 7 that two series z7 and Z7 are related by a

Clausen-type analogue but question is: Can we generalize this to include a parameter?

In chapter 9 we gave two conjectures with regard to congruences which have yet to
be proven. These are

Conjecture 10.4. Let {c7(n)} de�ned by

(n+ 1)2c7(n+ 1) = (26n2 + 13n+ 2)c7(n) + 3(3n− 1)(3n− 2)c7(n− 1)

with initial conditions

c7(−1) = 0, c7(0) = 1

be a sequence of integers. Then {c7(n)} satis�es a Lucas-type congruence for all

integers n if and only if p = 0 or the prime p is congruent to 1, 2 or 4 modulo 7.

and

Conjecture 10.5. Let {c7(n)} be de�ned in Equation (6.5), then

cnp ≡ cn (mod p2)

if and only if p = 0 or the prime p is congruent to 1, 2 or 4 modulo 7.
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