Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287920
Triangle T(n,k) read by rows: T(n,k) = floor(prime(n)/prime(k)), n >= k >= 1.
0
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 3, 2, 1, 1, 6, 4, 2, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 9, 6, 3, 2, 1, 1, 1, 1, 11, 7, 4, 3, 2, 1, 1, 1, 1, 14, 9, 5, 4, 2, 2, 1, 1, 1, 1, 15, 10, 6, 4, 2, 2, 1, 1, 1, 1, 1, 18, 12, 7, 5, 3, 2, 2, 1, 1, 1, 1, 1, 20, 13, 8, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
Alternate name: triangle of quotients of prime(n)/prime(k), n >= k >= 1.
EXAMPLE
Triangle starts:
n/k 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 1 1
3 2 1 1
4 3 2 1 1
5 5 3 2 1 1
6 6 4 2 1 1 1
7 8 5 3 2 1 1 1
8 9 6 3 2 1 1 1 1
9 11 7 4 3 2 1 1 1 1
10 14 9 5 4 2 2 1 1 1 1
11 15 10 6 4 2 2 1 1 1 1 1
12 18 12 7 5 3 2 2 1 1 1 1 1
T(11,3) = 6 because prime(11) = 31 and prime(3) = 5, and floor(31/5) = 6.
PROG
(PARI) T(n, k) = prime(n)\prime(k);
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Jun 06 2017
CROSSREFS
Cf. A000040 (primes), A130290 (1st column), A144769 (2nd column), A116572 (3rd column).
Sequence in context: A225640 A345418 A194543 * A027293 A104762 A152462
KEYWORD
nonn,tabl
AUTHOR
Bob Selcoe, Jun 02 2017
STATUS
approved