Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Number of minimal dominating sets in the n-antiprism graph.
4

%I #13 Aug 04 2017 03:15:16

%S 4,15,12,25,55,112,188,438,789,1573,3135,5980,11848,23035,45020,87873,

%T 171910,335464,655397,1281190,2501173,4888098,9548543,18653025,

%U 36441500,71190933,139076320,271694910,530784135,1036914040,2025703900,3957367099,7731003525

%N Number of minimal dominating sets in the n-antiprism graph.

%H Andrew Howroyd, <a href="/A290377/b290377.txt">Table of n, a(n) for n = 2..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a>

%F Empirical: a(n) = 2*a(n-2)+5*a(n-3)+a(n-4) -5*a(n-5)-8*a(n-6)+a(n-7) +6*a(n-8)+10*a(n-9)-2*a(n-10) -2*a(n-11)-5*a(n-12)+a(n-15) for n>16. - _Andrew Howroyd_, Aug 01 2017

%F Empirical g.f.: x^2*(4 + 15*x + 4*x^2 - 25*x^3 - 48*x^4 + 7*x^5 + 48*x^6 + 90*x^7 - 20*x^8 - 22*x^9 - 60*x^10 + 15*x^13) / (1 - 2*x^2 - 5*x^3 - x^4 + 5*x^5 + 8*x^6 - x^7 - 6*x^8 - 10*x^9 + 2*x^10 + 2*x^11 + 5*x^12 - x^15). - _Colin Barker_, Aug 01 2017

%Y Cf. A284699, A290336.

%K nonn

%O 2,1

%A _Eric W. Weisstein_, Jul 28 2017

%E a(2) and terms a(8) and beyond from _Andrew Howroyd_, Aug 01 2017