Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A292863
Decimal expansion of Product_{k>=1} (1 - exp(-Pi*k/4)).
10
3, 5, 9, 8, 9, 2, 6, 7, 8, 2, 0, 3, 6, 5, 2, 8, 9, 9, 3, 3, 9, 4, 3, 0, 2, 6, 5, 5, 4, 2, 3, 2, 2, 6, 8, 4, 1, 3, 7, 9, 8, 2, 4, 0, 4, 6, 9, 9, 2, 8, 6, 5, 6, 5, 6, 7, 6, 0, 7, 3, 6, 6, 0, 8, 1, 5, 2, 1, 9, 8, 2, 6, 7, 4, 7, 9, 1, 8, 0, 7, 4, 3, 5, 2, 9, 9, 5, 9, 1, 2, 0, 5, 4, 3, 6, 6, 9, 7, 9, 7, 8, 2, 8, 5, 3, 9
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Dedekind Eta Function
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Wikipedia, Euler function
FORMULA
Equals (6*sqrt(22*sqrt(2)-24) - 16)^(1/8) * exp(Pi/96)* Gamma(1/4) / (2*Pi^(3/4)).
EXAMPLE
0.359892678203652899339430265542322684137982404699286565676073660815219...
MATHEMATICA
RealDigits[(6*Sqrt[22*Sqrt[2] - 24] - 16)^(1/8) * E^(Pi/96) * Gamma[1/4] / (2*Pi^(3/4)), 10, 120][[1]]
RealDigits[QPochhammer[E^(-Pi/4)], 10, 120][[1]]
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 25 2017
STATUS
approved