Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A294200
Primes p such that 2^p - 2 is a practical number.
3
2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 151, 157, 163, 181, 191, 193, 197, 199, 211, 223, 229, 233, 241, 251, 257, 271, 277, 281, 283, 307, 311, 313, 331, 337, 349, 353
OFFSET
1,1
COMMENTS
Conjecture: The sequence has infinitely many terms. In other words, there are infinitely many practical numbers of the form 2^p - 2 with p prime.
By Fermat's little theorem, p divides 2^p - 2 for any prime p. Note that those 2^p - 1 with p prime are called Mersenne numbers.
LINKS
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017.
EXAMPLE
a(1) = 2 since 2 is prime and 2^2 - 2 = 2 is practical.
a(2) = 3 since 3 is prime and 2^3 - 2 = 6 is practical.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n];
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]);
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}];
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0);
tab={}; Do[If[pr[2^(Prime[k])-2], tab=Append[tab, Prime[k]]], {k, 1, 71}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 24 2017
STATUS
approved