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Agenda  

 Basics about nested recursions and the properties of their 
solutions 

 Highlights about some early recursions and their more recent 
generalizations 

 From interesting individuals to families with similar 
behaviour: focus on generalized Conolly recursion 

 Tree-based combinatorial interpretation for solutions to 
(generalized) Conolly families of recursions 

 Ceiling function solutions to (generalized) Conolly families of 
recursions 
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A nested recursion… 

Loosely speaking, any recursion where at least one of the 
arguments contains a term of the recursion. 

Some early examples: 

R(n) = R(n-R(n-1)), Ics: some finite set (Golomb, ca. 1980?)   

R(n) = R(n-R(n-1)) + 1, Ics: R(1) = 1 (Golomb, ca. 1986?) 

R(n) = n- R(R(n-1)), Ics: 1 (Hofstadter G, GEB 1979) 

R(n) = R(n-R(n-1)) + R(R(n-1)), Ics: 1, 1 (Hofstadter-Conway, 1988) 

R(n) = R(n-R(n-1)) + R(n-R(n-2)), Ics: 1,1 (Hofstadter Q, GEB 1979) 

R(n) = R(n-R(n-1)) + R(n-1-R(n-2)), Ics: 1,2 (Conolly, 1987) 

R(n) = R(n-1-R(n-1)) + R(n-2-R(n-2)), Ics: 1,1,2 (Tanny, 1992) 
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A solution to a nested recursion is… 

Any infinite sequence that satisfies the recursion. No guarantee 
that a solution exists. What can go wrong? 

 Try to evaluate the recursion at a negative argument:  

R(n) = R(n-R(n-1))+1, Ics: 1,4. Then R(3) = R(3-R(2))+1 =R(-1)+1. 
The sequence terminates (“dies”) at n = 3. 

R(n) = R(n-R(n-1))+R(n-R(n-4)), Ics: 3,1,4,4. Terminates at 
n=474,767.  

R(n) = R(n-19-R(n-3))+R(n-28-R(n-12)), Ics: 129 Terminates at n = 
19,517,558.  

Find recursions with increasing “mortality” (Ruskey). 

 Try to evaluate the recursion for a future argument:   

R(n) = R(R(n-1))+3, Ics: 1. R(2) = 4 and R(3) = R(4)+3. 
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More on existence of solutions… 

 R(n) = R(n-R(n-1)) + R(n-R(n-2)), Ics: 1,1 (Hofstadter Q). 
Computed to n = 12,148,002,000 (Ruskey).  

 A recurrence relation exists, that given a set of Ics, the 
question of whether the sequence dies for that Ics is not 
decidable. Later this morning Frank Ruskey will discuss such 
an example. (Celaya and Ruskey, 2012)  

 Existence (and behaviour) of the solution to a nested 
recursion can be highly sensitive to the parameters and to the 
set of Ics.  
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Solving a nested recursion… 

Nesting makes recursions highly resistant to usual techniques for 
solving difference equations. 

Initial focus on solving individual recursions; proof technique 
usually (multi-statement) induction.  

Recent work on solving families of recursions characterized by 
one or more parameters using alternate proof techniques.  

Closed form solutions sometimes available: 

 R(n) = R(n-R(n-1))+1, Ics: 1: R(n) = fl{[1+fl{√(8n)}]/2}. 

 R(n) = n- R(R(n-1)), Ics: 1: R(n) = fl{(n+1)/α}, α golden mean. 

 R(n) = R(n-R(n-1))+R(n-2-R(n-3)), Ics: 1,1: R(n) = cl{n/2}. 

 R(n) = R(n-R(n-2))+R(n-4-R(n-6)), Ics: 1,2,2,2,3,4: R(n) = 
cl{n/4}+cl{(n-1)/4}. 
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Solution properties can vary greatly… 

 Preceding closed forms indicate that some solutions are 
increasing with successive terms differing by 0 or 1 (call these 
slow growing or slow). Not surprisingly, the most is known 
about nested recursions with such solutions.  

 More generally, some solutions display well-behaved, 
discernible structure. Sometimes the solution is periodic or 
“quasi-periodic”. 

 Some solutions initially appear chaotic, but subsequent 
analysis uncovers some underlying structure.  

 Some solutions are wild, with no hint of any structure, yet 
appear to remain well defined for all n. How do we 
demonstrate this? 
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R(n) = R(n-R(n-1)) 
(Golomb) 

One of the earliest examples of a nested recursion. Need to 
provide appropriate Ics to ensure a solution.  

Every solution is eventually periodic, with all its values taken 
from those in the Ics  (Cheng, 1981, PhD student of Golomb). 
Cheng calls these Golomb sequences. 

Ics: 1,3,2 yields R(4) = R(2) = 3; R(5) = R(2) = 3; R(6) = R(3) = 2; 
R(7) = R(5) = 3; R(8) = R(5) = 3; R(9) = R(6) = 2; sequence is 
{1,3,2,3,3,2,3,3,2,…} so eventually periodic with period 3 and 
cycle (3,3,2).  

Period of the solution sequence can be larger than the largest 
value among the Ics. Here is an example: take Ics:  
6,9,3,6,3,3,6,9,6,6,3,6. This yields a sequence that is periodic 
with period 12, with the Ics as the cycle. 
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R(n) = R(n-R(n-1))+1, R(1) = 1 
(Golomb) 

Early recursion, closed form solution: R(n) = fl{[1+√(8n)]/2}. 
Solution: 1,2,2,3,3,3,4,4,4,4,…; each positive n appears n times. 

Sequence is slow. First proof by induction. 
“This furnishes an important example of a recursion which looks 

as “strange” as several others that we have considered, but 
where the resulting sequence is completely regular and 
predictable. It is a challenging unsolved problem to categorize 
those “strange” recursions which have well-behaved, closed-
form solutions.” (Golomb, ca. 1986?) – Still true today!! 

R(n) = R(n-s-R(n-1))+1, Ics: 1s+12s+23: Closed form slow solution 
R(n) = fl{(√8(n+s(s+1)/2))+1)/2}-s. Each positive n appears n+s 
times. Special case of more general result which is proved by 
tree methodology. (Isgur, Kuznetsov, Tanny, 2012)   
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R(n) = n- R(n-R(n-1)), R(1) = 1 
(Hofstadter G) 

Solution is slow, with Fibonacci connection: R(Fn+1) = Fn  
Frequency sequence is Fibonacci string: 2122121221… generated 

by morphism 2→21 and 1→2, starts at 2. More on morphisms 
by Marcel Celaya soon.  
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n= 1 2 3 4 5 6 7 8 9 10 

R(n+0) 1 1 2 3 3 4 4 5 6 6 

R(n+10) 7 8 8 9 9 10 11 11 12 12 

R(n+20) 13 14 14 15 16 16 17 17 18 19 

R(n+30) 19 20 21 21 22 22 23 24 24 25 

R(n+40) 25 26 27 27 28 29 29 30 30 31 
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R(n) = R(n-R(n-1)) + R(R(n-1)), Ics: 1,1 
(Conway-Hofstadter-Newman-$10K) 

Early recursion, R(2n) = 2n-1 .Interesting  story too! 

n= 1 2 3 4 5 6 7 8 9 10 

R(n+0) 1 1 2 2 3 4 4 4 5 6 

R(n+10) 7 7 8 8 8 8 9 10 11 12 

R(n+20) 12 13 14 14 15 15 15 16 16 16 

R(n+30) 16 16 17 18 19 20 21 21 22 23 

R(n+40) 24 24 25 26 26 27 27 27 28 29 

R(n+50) 29 30 30 30 31 31 31 31 32 32 

R(n+60) 32 32 32 32 33 34 35 36 37 38 

R(n+70) 38 39 40 41 42 42 43 44 45 45 

R(n+80) 46 47 47 48 48 48 49 50 51 51 

R(n+90) 52 53 53 54 54 54 55 56 56 57 
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Another view of the Conway-Hofstadter-
Newman sequence 

Repetition of basic structure within intervals of length 2n. 
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Generalizations of $10K sequence 

New Ics: R(n) = R(n-R(n-1))+R(R(n-1)), Ics: 1k+1 
(Newman-Kleitman, 1992) 

-Solution slow growing, with role of powers of 2 played by 
another class of sequences parameterized by k: En =En-1 + En-k  
with E1 = … = Ek = 1, then R(En) = En-k for n > k. For k=1, En=2n, 
for k=2 En= Fibonacci numbers. 

Increase degree of nesting: R(n) = R(n-R(R(n-1))) + 
R(R(R(n-1))), Ics: 1,1 (Grytczuk, 2004) 

-Solution slow growing, role of powers of 2 played by Fibonacci 
sequence En but now R(En)= En-1. For higher nesting k>3 
analogous results with same recursion En =En-1 + En-k with E1 = 
… = Ek = 1. 
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R(n) = R(n-R(n-1))+R(n-R(n-2)),  
Ics: 1,1 (Hofstadter Q) 

 n = 1 2 3 4 5 6 7 8 9 10 

 Q(n + 0) 1 1 2 3 3 4 5 5 6 6 

 Q(n +10) 6 8 8 8 10 9 10 11 11 12 

 Q(n +20) 12 12 12 16 14 14 16 16 16 16 

 Q(n +30) 20 17 17 20 21 19 20 22 21 22 

 Q(n +40) 23 23 24 24 24 24 24 32 24 25 

 Q(n +50) 30 28 26 30 30 28 32 30 32 32 

 Q(n +60) 32 32 40 33 31 38 35 33 39 40 

 Q(n +70) 37 38 40 39 40 39 42 40 41 43 

 Q(n +80) 44 43 43 46 44 45 47 47 46 48 

 Q(n +90) 48 48 48 48 48 64 41 52 54 56 
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Alternating chaos and quiet in Q 
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R(n) = R(n-R(n-1))+R(n-R(n-2)):  
Alternative Ics make a big difference! 

Ics: 3,2,1: For k≥1, solution is: R(3k+1)= 3, R(3k+2)= 3k+2, R(3k) = 
3k-2. (Golomb). Example shows sensitivity of nested recursion 
solutions to Ics. Call behaviour of this solution “quasi-
periodic” of period 3.  

Generate quasi-periodic sequences of any period, e.g., Ics: 
0,0,2,4,2,4,4,8 give quasi-periodic solution of period 4: R(4k)= 
4k, R(4k+1)= 2, R(4k+2)= 4k, R(4k+3)= 4. 

Infinite number of Ics (Ruskey, 2011): let R(n) = 0 for n<0, R(0) = 
R(3) = 3, R(1) = R(4) = 6, R(2) = 5, R(5) = 8. Then R(n) is well 
defined and for all k≥0, R(3k) = 3, R(3k+1) = 6, and R(3k+2) = 
Fk+5, where Fn is Fibonacci sequence. 

In ongoing work we have developed analogous results to 
Ruskey’s for several other nested recursions.  
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R(n) = R(n-R(n-2))+R(n-R(n-4)),  
Ics: 1,1,1,1 (Hofstadter W) 
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R(n) = R(n-R(n-1))+R(n-R(n-4)),  
Ics: 1,1,1,1 (Hofstadter V) 
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 n = 1 2 3 4 5 6 7 8 9 10 

 V(n + 0) 1 1 1 1 2 3 4 5 5 6 

 V(n + 10) 6 7 8 8 9 9 10 11 11 11 

 V(n + 20) 12 12 13 14 14 15 15 16 17 17 

 V(n + 30) 17 18 18 19 20 20 21 21 22 22 

 V(n + 40) 22 23 23 24 25 25 26 26 27 27 

 V(n + 50) 28 29 29 29 30 30 31 32 32 33 

 V(n + 60) 33 34 34 34 35 35 36 37 37 38 

 V(n + 70) 38 39 39 40 41 41 41 42 42 43 

 V(n + 80) 43 44 44 44 45 45 46 47 47 48 

 V(n + 90) 48 49 49 50 51 51 51 52 52 53 
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V is immortalized in verse 

Kellie O’Connor Gutman 
Recalling a Collaboration with Greg Huber and Doug Hofstadter 

 

And now, my friends, in poetry, 

The lowdown on the function V, 

Which calls itself recursively. 

My verse will mirror it, you’ll see. 

… 

 

Mathematical Intelligencer 23 (3) (2001), 50. 
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Frequency sequence of V: some data 

 a = 1 2 3 4 5 6 7 8 9 10 

 F(a + 0) 4 1 1 1 2 2 1 2 2 1 

 F(a + 10) 3 2 1 2 2 1 3 2 1 2 

 F(a + 20) 2 3 2 1 2 2 2 1 3 2 

 F(a + 30) 1 2 2 3 2 1 2 2 2 1 

 F(a + 40) 3 2 2 3 2 1 2 2 2 1 

 F(a + 50) 3 2 2 1 2 2 2 3 2 1 

 F(a + 60) 2 2 2 1 3 2 2 3 2 1 

 F(a + 70) 2 2 2 1 3 2 2 1 2 2 

 F(a + 80) 2 3 2 1 3 2 2 3 2 1 

 F(a + 90) 2 2 2 1 3 2 2 1 2 2 
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Rules determine frequency sequence for V 
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F(a-2) F(a-1) F(a) F(a+1) F(2a) F(2a+1) 

1 2 2 

3 3 2 

1 2 1 3 

3 2 3 1 3 

3 2 2 1 3 

3 2 1 1 2 

1 or 3 2 2 1 2 1 

1 or 3 2 2 2 or 3 2 2 

2 2 2 1 1 2 

2 2 2 3 1 3 
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Automata and nested recurrences 

Jeff Shallit will talk later this morning about the 
relation between automata and nested recurrences.  

In particular he will show that the frequency sequence 
of V, which is given by the preceding rules, is 2-
automatic. (Shallit, 2011) 

Recently we identified  family of related recursions with 
“V-like” solutions: recursions with Ics whose 
solutions are slow and (eventually) obey similar or 
analogous frequency sequence rules as those for V. 
We expect there are more automatons lurking! 
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R(n)= R(n – R(n-1)) + R(n - 1 – R(n-2)), 
Ics:1,2 (Conolly, 1989) 

23 

n= 1 2 3 4 5 6 7 8 9 10

F(n + 0) 1 2 2 3 4 4 4 5 6 6

F(n + 10) 7 8 8 8 8 9 10 10 11 12

F(n + 20) 12 12 13 14 14 15 16 16 16 16

F(n + 30) 16 17 18 18 19 20 20 20 21 22

F(n + 40) 22 23 24 24 24 24 25 26 26 27

F(n + 50) 28 28 28 29 30 30 31 32 32 32

F(n + 60) 32 32 32 33 34 34 35 36 36 36

F(n + 70) 37 38 38 39 40 40 40 40 41 42

F(n + 80) 42 43 44 44 44 45 46 46 47 48

F(n + 90) 48 48 48 48 49 50 50 51 52 52
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Frequency sequence of Conolly sequence 
is “ruler function” 

Like V, the Conolly sequence is slow. 

The frequency sequence for the Conolly sequence is very 
different from V: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 
1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 
1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7,…   

Frequency sequence is “ruler” function r(n): 1 plus the exponent 
of 2 in the prime factorization of n (the 2-adic valuation of n).  

For each n≥0 initial 2n terms repeat, but final term increases by 
1; it follows that in Conolly sequence there are 2 2s, 3 4s, 4 8s, 
5 16s,… 
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Constructing a general “family” of Conolly 
sequences  

1. T1(n) = T1(n-1-T1(n-1)) + T1(n-2-T1(n-2)), Ics: 1,1,2. (Tanny 1992) 
1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 9, 10, 10, 11, 12, 

12, 12, 13, 14, 14, 15, 16, 16, 16, 16, 16, 16,.. 
Frequency sequence: 2, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6,.. 

Each power of 2 in T1(n) occurs 1 more time compared to 
Conolly sequence. 

  
This generalizes by introducing a new parameter “s”. (Jackson, 

Ruskey, 2006) 
2. Ts(n) = Ts(n-s-Ts(n-1)) + Ts(n-(s+1)-Ts(n-2)); Ics: 1s+1,2.  
Frequency sequence: s+1, s+2, 1, s+3, 1, 2, 1, s+4, 1, 2, 1, 3, 1, 2, 

1, s+5, …Each power of 2 in Ts(n) occurs s more times 
compared to Conolly sequence. 
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More sequences in general Conolly family: 
k summands 

1. T(n) = T(n-s-T(n-1)) + T(n-s-1-T(n-2)) + …+ T(n-s-(k-1)-T(n-k)), 
Ics: 1s+1,2,…,k. (Ruskey, Degau, 2009; Higham, Tanny, 1993 for 
s=1). 

Slow solution, frequency sequence ruler function based on k. For 
k=3, s=0: 1,1,2,1,1,2,1,1,3,1,1,2,1,1,2,1,1,3,1,1,2,1,1,2, 1,1,4,… 

 

But Ics make big difference: using all 1s yields family of 
solutions with very different properties. 

 
2. T(n) = T(n-s-T(n-1)) + T(n-s-1-T(n-2)) + …+ T(n-s-(k-1)-T(n-k)), 

Ics: 1s+k. (Callaghan, Chew, Tanny, 2005).  

Solution not slow, but partitions into k-1 subsequences where 
successive terms differ by 0 or k-1. 
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Leaf counting in infinite labeled binary tree 
T0 (Jackson-Ruskey, 2006) 

T0: complete binary trees of sizes 1,1,3,7,…,2h-1,… labeled in pre-
order, joined left to right by an infinite path of “super” nodes. 

LT0(n) ≡ no. of nonempty leaves in T0(n) (T0 with labels ≤n). 
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Eureka! Conolly sequence R(n) 
counts leaves in T0(n) (tree with labels ≤n) 

R(13) = 8 = R(13-R(12)) + R(12-R(11)) = R(13-8) + R(12-7) = 
R(5)+R(5) = 4+4 =8. 1st (2nd) term counts left (right) leaves. 
(Jackson-Ruskey, 2006) 
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Sketch tree proof method: Leaf counting 
function solves the Conolly recursion  

LT0(n) ≡ number of nonempty leaves in T0(n) (leaf counting fn). 
LT0(n) satisfies Ics (n=1,2). For n>2 LT0(n) satisfies the recursion:  
LT0(n) = LT0(n- LT0(n-1)) + LT0(n-1- LT0(n-2)). First (second) summand 

counts nonempty left (right) leaves. Sketch argument:  
LT0(n- LT0(n-1)) ≡ number of nonempty leaves in T0(n- LT0(n-1)). 
“Prune” T0(n) by removing last row, create binary tree PT0(n), 

show PT0(n)= T0(n- LT0(n-1)); pruning operation corresponds 
to subtraction of LT0(n-1) from argument n. N.B.: Infinite 
binary tree with bottom level removed is infinite binary tree. 

LPT0(n) ≡ number of nonempty leaves of PT0(n) = LT0(n- LT0(n-1)) 
Key observation: a penultimate node of T0(n) ends pruning as a 

nonempty leaf of PT0(n) if and only if its left child in T0(n) was 
nonempty. 
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Tree-based solutions for generalized 
Conolly family of nested recursions  

Add parameters to recursion. Modify tree structure or labelling. 
Solutions count leaves or cells in leaves. 

1. Rs(n) = Rs(n-s-Rs(n-1))+Rs(n-(s+1)-Rs(n-2)); Ics: 1(s+1)2 (Jackson-
Ruskey, 2006). s≥0. 

2. R(n) = R(n-s-R(n-j))+R(n-s-j-R(n-2j)); Ics: from related tree 
(Isgur, Reiss, Tanny, 2009). j≥1.  

3. R(n) = R(n-s-R(n-j))+R(n-s-2j-R(n-3j)); Ics: from related tree 
(Isgur, Reiss, Tanny, 2009). j≥1. 

4. R(n) = R(n-s-R(n-j))+R(n-s-j-m-R(n-2j-m)); Ics: from related 
tree (Isgur, 2012). 0≤m ≤ j. Generalizes 2 and 3.  

5. R(n) = R(n-s-R(n-j))+R(n-s-j-R(n-2j+q)); Ics: from related tree 
(Isgur, 2012). Generalizes 2 and 3. 0≤q ≤ j.   

And many more, including recursions with k summands. 
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Nested recursions, simultaneous 
parameters and tree superpositions  

Mustazee Rahman, whose talk will follow this one, will 
provide many more details about the nature of the 
tree-based methodology for solving the preceding 
and other nested recursions. 
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Asymptotic behaviour of solutions for 
generalized Conolly nested recursions 

Parameters positive or non-negative integers; k is “arity”; p = (p1, 
p2, …,pk) is “order” (all pi = p, recursion has order p); if ν = 0 
then homogeneous. Assume c Ics. 

If A(n) is any solution (not necessarily slow) such that A(n)/n 
tends to a limit L>0, then L= (k-1)/∑pi. If pi = p for all i, then 
L=(k-1)/kp. (If k = 2, p = 1, then L = ½; Hofstadter sequence 
Q(n) seems to have this asymptotic limit.) 
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Ceiling functions and their sums solve 
certain generalized Conolly recursions 

R(n) = R(n-s-R(n-a))+R(n-t-R(n-b)), a, b both odd and 2(s+t) = 
a+b. Solution is cl[n/2] (appropriate Ics). And conversely! 
(Erickson, Isgur, Jackson, Ruskey, Tanny, 2012) 

More generally: Define the sum of ceiling function sum C(n) = 
∑cl[(n-i)/2j], sum on i=0,1,…,j-1. Then C(n) satisfies the nested 
recursion R(n) = R(n-s-R(n-a))+R(n-t-R(n-b)) with appropriate 
Ics if and only if the following conditions hold: (i) s,t ≡ 0 mod j 
(ii) a, b ≡ j mod 2j (iii) 2(s+t) = a+b. (Drabek, Isgur, Kuznetsov, 
Tanny, 2011). 

For every q>1, cl[n/q] solves generalized Conolly recursion 
(appropriate Ics) (Isgur, Kuznetsov, Tanny, 2011). Similar result 
for C(n) = ∑cl[(n-i+1)/kj], sum on i=1,…,j. (Isgur, 2012)  

Professor Steve Tanny, June 2013 33 



34 

Now this is not the end… 

It is not even the beginning of the end. But it is the end of the 
beginning. (Winston Churchill)  

There is much more to come. Mustazee Rahman will take up the 
story. 
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