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Abstract

Label-increasing trees are fully labeled rooted trees with
the restriction that Ehe labels are in increasing order on
every path from the'root; the best known example is the binary
case - no tree with more than two branches at the'root, or
internal vertices of degree greater than three - extensively
examined in [5]. The forests without branching restrictions

are enumerated by number of trees by Fn(x) = x(x+1)...(x+n-1),

n>1 (Fo(x) 1), whose equivalent:

- = '
Fn(x) Yn(le,...,xTn), Fn(l) Tn+l n!

is readily adapted to branching restriction.



o
o

1. Introduction

What H. W. Becker, in the dim past of 1949, (private
communication) called triangular words, (A-words for short)
are families of sequences (sl,sz,...,sn), generated by the
rule : s, = 1,2,...1. For n = 3 the sequences are: 111, 112,

1

113, 121, 122, 123. 1In [4] their complements: s; = i, i+1,
..., n, are called "exeedent maps”

Tt is immediate that the number of words for any n is n!.
The enumerator for words by number of fixed points: s, = i

1

(which is also the enumerator of the associated forests by

number of trees, Fn(x) has the immediate recurrence

Fn(x) = (x+n-1) Fn—l(x)

since the only fixed point for n is s, = n. Hence, since
Fl(X) = X,

Fn(x) = x(x+1)...(x#+n-1), n = 1,2,... (1)
and, by convention, Fo(x) = 1.

The right hand side of (l) is the enumerator of
permutations by number of cycles, designated by cn(x) in
[7, p.71], (which incidentally implies a mapping of trees to
cyclic graphs). Also [7, p.70]

cn(x) = Cn(x,..., x) = Yn(x,x,Zx,...&n—l)!x)
with Cn the cycle indicator of the symmetric group, a multi-
variable function, and Yg its relative, the Bell multivariable

polynomial.



Thus a companion form of (1) is

oo, xT ), F (1) = n! =T - (la)
n n

F oG o= v (xT,, n+l

The mapping of A-words to forests follows the procedure
described in [8]: a fixed point, s; = i, is a tree root, and
s; = j, j # 1 is a line from i to j. Thus Fn(x) is an

enumerator of forests by number of trees, with n point labels

clearly in increasing order on every branch from a root, and

at most n trees. The forests for n = 3 are
23 3 2. 3. 3.
o - !
N\ /2.
o o . 00 00 00 000
1 1 13 12 12 123
Also, the identity Fn(l) = Tn+l in equation (la), reflects

the fact that the forests for n become trees for n+l by
adding a new root with single lines to each of the forest
roots (which are then ignored).

The virtue of (la) is the ease with which it is adapted
to branching restrictions. If the restriction is to af most
k branchings (at most k branches at a root, and internal
virtices of degree at most k+1), the terms in Yn are those
of degree of most k, and the forest enumerator Fn(x,k) is

given by

F (x3k) = Y (£xT_ (k),...,fxT_(k)), F_(1,k) T (k) (2)
n n 1 n n

n+1l
with f an umbral variable, f’= f, and f, = £, =...= £ = 1,
j 1 2 k
fk+n =0, n=1,2,... . Of course Fn(x;k) = Fn(x), n = 0(1l)k.



Then
F(x,y3k) = 1L Fn(x;k)yn/n!
0
= exp (yY(ExT_ (k),...,fxT. (k),...), Y' =Y
1 ] n
= exp (fx I T (k) yn/n!)
n
1
= exp (fx (T(y;k)-1) (3)
with
T(y;k)=IT (k) vy /n!
g D
Hence
k . .
F(x,y3k) = I x3 (T(y;k)-1)7/j! (4)
: 0
and, with a prime denoting a derivative, by (2)
k . '
T'(y,k) = F(l,y;k) = T (T(y,k)-1)3/3! (5)
0 )

The right hand side of (5) is the "displacement'" polynomial

Dk(T(x))/k! defined in [7, p.59]; hence

k! T'(y,k) = Dk(T(X)) _ (5a)
For k = 2, (5a) becomes
2T (y32) = 14T%(y;2) (6)

whose solution, going back to D. Andre [1], is

T(y;2) = tan y + sec y v (7)
The first few values of Tn(Z) are as follows

n 0 1 2 3 4 5 6 7 8

Tn(Z) 1 1 1 2 5 16 61 272 1385

Further. values appear in [9, sequence 587], but the most
extensive table: n = 0(1)120 seems to be in [6]. Their
relation to "binary increasing trees'" has already appeared

in [3] and [5].



From (4) and (6), it follows that
F(x,y3;2) = 1-x + (x—xz) T(y;2) + sz‘(y;2)

so that the forest enumerator Fn(x;2) is given bv

~ 2 2
Fn(X,Z) = (1 X)Gno + (x-x7) Tn(2) + x Tn+l(2) (8)
which satifies the initial conditions Fo = 1, F, = x,
2
F2 = xX+x .

It is interesting to notice that use of two of the

congruences‘for Bell polynomials in [2], namely

4 = p
Yp(>1,~--,yp) = y1+yp (mod p)

Y
n+p

1t

n
hot
Y Y o+

n p ri;r) yr+PYn—p (mod p)

with p a prime, lead to, with An = Tn(2) (A for Andre)
Ap+n—l = ApAn (mod p) (9)

and by iteration

= J
Aj(p—l)+n = Ap An (mod p) (10)

Combined with the results of periodicity of residues

in [6], (9) and (10) lead to

Ap =1 (mod p), P = 1 (mod 4&)

ApE—l (mod p), p 3 (mod 4&)

For larger values of k, the familiarity and elegance of
k = 2 vanish; the brief description of results for k = 3,4 in

the next section, merely underlines this fact.



2., Ternary and Quaternary Trees and Forests

For k = 3, the ternary case, 1t is convenient to replace
Tn(3) by Bn and T(y;3) by B(y)= ZBnyn/n!. Then by (5a)
6B' (y) = 2 + 3B(y) + B°(y) (11)

or, if Bj(y) P Bn(j) yn/n!,

6B 41 = 28,0 * 3B, * B (D) (12)

with dnm the Kronecker delta; equation (12) of course

satisfies the initial conditions: BO = 1, B = n!, n = 0(1)3.

By (4), the forest generating function may be written

6F (x,y:3) = 6+6(B(y)-Dx+ 3(B(y)-1)’x" + (B(y)-1)>x> (13)
Using (11), (B(y)-1)> = 6B'(y) - 3B°(y)-3; hence (13)
implies
2
6Fn(x:3) = 66n0 + 6(Bn—6no)x + 3(Bn(2) - ZBn + 6n0)x (14)
3
+ (6B, - 3B_(2) - 35 ()=

2
Thus Fo(x) = 1, Fl(x) = x, FZ(X) = x+x~, and

2 _
6Fn(x;3) 6an + 3(Bn(2) —2Bn)x + (6Bn+l—3Bn(2)),n = 3,4,.



Numerical results (obtained by hand) are as follows:

n 0 1 2 3

B 1 1 1 2
n

N

& 5 e L 8 9 10
6 23 108 601 3863 28159 229524

Bn(2) 1 2 4 10 .34 146 752 4520 31062 240188 2063846

Bn(3) 1 3 9 30 120 579 3282 21375 157365 1292667 11722416

and B11 = 2068498

Some general information on the sequence {Bn} is in the

congruences: B Bn (nod p) for p a prime greater than

Bp+n—l: P
= BJ

3, and its consequence Bj(p—l)+n = By

B (mod p).

The corresponding results for k = 4 (with Cn = Tn(4))

for n>0, are

2+ C =8 C 4+ 6 C (2) + C_(4)
n+l n n n

2 3
24 Fn(x,A) = 24 Cnx + 12(Cn(2) - 2 Cn)x + A(Cn(3)—3Cn(2)+3Cn)x

4

-+ (24(:n+1 - 4(Cn(3) + 3Cn))k
and the table:
n 0 L 2 3 4 5 6 7 8 9 10
Crl 1 1 1 2 6 24 119 703 4819 37596 328871
Cn(2) 1 2 4 10 34 148 786 4920 35446 288822 ~ 2625844

Cn(3) 1 3 9 30 120 582 3351 22395 170505 1457238 13816869

16 68 324 1776 11204 80512 651076 5859204 58117066

—
o~

C (&)
n

Also C = 3187627



The congruences for Crl are the same as those for Bn’
with p a prime greater than 3.

None of the sequences for these two tables appear in
[9].

A more exﬁensive table for Tn(k), ignoring the initial

values: n = 1(1)k, and the trivial Tn(l) = 1, is the following

k/a 3 4 5 6 1 8 9 10

2 2 5 16 61 272 1385 7936 50521
3 6 23 108 601 3863 28159 229524
4 24 119 . 703 4819 37596 328871
5 120 719 5017 39938 357100
6 720 5039 40290 362258
7 : 5040 40319 362842
8 _ 40320 362879

9 362880

The differences, Un(k) = Tﬁ(k)— Tn(k—l) , show the
following regularities:

Un(n—l) = 1, n>2

|
—
+

U (n-2) ), n>3
n

n+l), a>5

]
N
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U (n-3)
n
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