Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A299918
Motzkin numbers (A001006) mod 8.
11
1, 1, 2, 4, 1, 5, 3, 7, 3, 3, 4, 6, 7, 3, 2, 4, 3, 3, 6, 4, 3, 7, 7, 7, 5, 5, 4, 2, 1, 5, 3, 7, 3, 3, 6, 4, 3, 7, 1, 5, 1, 1, 4, 2, 5, 1, 4, 6, 5, 5, 2, 4, 5, 1, 1, 1, 3, 3, 4, 6, 7, 3, 2, 4, 3, 3, 6, 4, 3, 7, 1, 5, 1, 1, 4, 2, 5, 1, 6, 4, 1, 1, 2, 4, 1
OFFSET
0,3
LINKS
S.-P. Eu, S.-C. Liu, and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8, Europ. J. Combin. 29 (2008), 1449-1466.
Christian Krattenthaler and Thomas W. Müller, Motzkin numbers and related sequences modulo powers of 2, arXiv:1608.05657 [math.CO], 2016-2018.
E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, J. Théorie Nombres Bordeaux 27 (2015), 245-288.
Ying Wang and Guoce Xin, A Classification of Motzkin Numbers Modulo 8, Electron. J. Combin., 25(1) (2018), #P1.54.
MAPLE
f:= rectoproc({(3+3*n)*a(n)+(5+2*n)*a(1+n)+(-4-n)*a(n+2), a(0) = 1, a(1) = 1}, a(n), remember): seq(f(n) mod 8, n=0..200); # Robert Israel, Mar 16 2018
MATHEMATICA
Table[Mod[GegenbauerC[n, -n - 1, -1/2] / (n + 1), 8], {n, 0, 100}] (* Vincenzo Librandi, Sep 08 2018 *)
PROG
(PARI) catalan(n) = binomial(2*n, n)/(n+1);
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*catalan(k+1)) % 8; \\ Michel Marcus, May 23 2022
CROSSREFS
Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710.
Sequence in context: A060370 A318704 A165064 * A021418 A283741 A094640
KEYWORD
nonn,hear
AUTHOR
N. J. A. Sloane, Mar 16 2018
STATUS
approved