OFFSET
1,3
COMMENTS
tau(n) = the number of the divisors of n (A000005).
tau(n)^n > n^tau(n) for all n > 3.
EXAMPLE
For n = 8; a(8) = 0 because tau(8)^8 mod 8^tau(8) = 4^8 mod 8^4 = 65536 mod 4096 = 0.
MATHEMATICA
PowerMod[#[[2]], #[[1]], #[[1]]^#[[2]]]&/@Table[{n, DivisorSigma[0, n]}, {n, 40}] (* Harvey P. Dale, Jan 08 2023 *)
PROG
(Magma) [(NumberOfDivisors(n)^n) mod (n^NumberOfDivisors(n)): n in[1..100]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 16 2018
STATUS
approved