Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A318277
Triangle read by rows; T(n, k) is the number of divisors of A025487(n) having the same prime signature as A025487(k) where 1 <= k <= n.
2
1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 3, 0, 3, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 3, 1, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1
OFFSET
1,8
COMMENTS
If A025487(k) doesn't divide A025487(n) then T(n, k) = 0.
Adapted from Clark Kimberling at A074206: "With different offset: A074206(A025487(n)) = sum of all A074206(A025487(k)) such that A025487(k) divides A025487(n) and A025487(k) < A025487(n)."
By looking at the number of divisors of A025487(n) that have the same prime signature as A025487(n) can help in computing A074206, especially if A025487(n) has a lot of divisors.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)
FORMULA
Row sums are A000005(A025487(n)).
EXAMPLE
A025487(9) = 30 and A025487(4) = 6 and have prime signatures (1, 1, 1) and (1, 1) respectively. There are three divisors of 30 with the prime signature (1, 1), being 6, 10 and 15. Therefore, T(9, 4) = 3.
Triangle with rows n and columns k starts:
1,
1, 1,
1, 1, 1,
1, 2, 0, 1,
1, 1, 1, 0, 1,
1, 2, 1, 1, 0, 1,
1, 1, 1, 0, 1, 0, 1,
1, 2, 1, 1, 1, 1, 0, 1,
1, 3, 0, 3, 0, 0, 0, 0, 1,
1, 1, 1, 0, 1, 0, 1, 0, 0, 1,
1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 1,
1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1,
1, 3, 1, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1,
MATHEMATICA
f[n_] := Block[{lim, ww}, Set[{lim, ww}, {Product[Prime@ i, {i, n}], NestList[Append[#, 1] &, {1}, n - 1]} ]; {{{0}}}~Join~Map[Block[{w = #, k = 1}, Sort@ Apply[Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[Do[If[# <= lim, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, #]] &@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}]][[-1]]] &, ww]]; With[{s = Sort@ Map[{Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #], #} &, Join @@ f@ 4]}, Table[DivisorSum[s[[n, 1]], 1 &, If[Length@ # == 1, #, TakeWhile[#, # > 0 &]] &@ Sort[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@ #, Greater] == s[[k, -1]] &], {n, Length@ s}, {k, n}]] // Flatten (* Michael De Vlieger, Oct 10 2018 *)
PROG
(PARI) ps(y) = factor(y)[, 2];
tabl(nn) = {v = al(nn); for (n=1, nn, d = divisors(v[n]); for (k=1, n, f = ps(v[k]); nb = #select(x->(ps(x) == f), d); print1(nb, ", "); ); print; ); } \\ Michel Marcus, Oct 11 2018; where al(n) is defined in A025487
CROSSREFS
Sequence in context: A364047 A373335 A178798 * A233321 A233323 A115381
KEYWORD
nonn,tabl
AUTHOR
David A. Corneth, Aug 24 2018
STATUS
approved