Relation
$$\beta = f(\tau)$$
 (Abstract)

The number of divisors of number n is called $\tau(n)$.

The number of ways for a number n to be Brazilian is called $\beta(n)$ with

$$\beta(n) = \beta'(n) + \beta''(n)$$
 where

- $-> \beta'(n)$ is the number of representations type aa_b , but not 11_b, and
- $-> \beta$ "(n) is the number of representations with at least three digits.

Example:
$$\tau(15) = 4$$
; $15 = 1111_2 = 33_4$; $\beta(15) = 2$, $\beta'(15) = 1$, $\beta''(15) = 1$.

The different relations $\beta = f(\tau)$

- 1. τ (n) is even ==> n no square: A000037
- 1.1 $\tau(n) = 2 => n$ prime: A000040 These integers satisfy $\beta'(n) = 0$.

$$β$$
''(n) = 0, $β$ (n) = $τ$ (n)/2 – 1 = 0, non-Brazilian primes : A220627
β''(n) = 1, $β$ (n) = $τ$ (n)/2 = 1, Brazilian primes : A085104 \ {31,8191}
β''(n) = 2, $β$ (n) = $τ$ (n)/2 +1 = 2, Brazilian primes : {31,8191} = A119598 \ {1}

$$1.2 \tau(n) >= 4$$

1.2.1. n non-oblong (and no square): A308874 These integers satisfy $\beta'(n) = \tau(n)/2 - 1$.

```
\begin{array}{ll} \beta"(n)=0,\,\beta(n)=\tau(n)/2-1; & A326386\\ \beta"(n)=1,\,\beta(n)=\tau(n)/2: & A326387\\ \beta"(n)=2,\,\beta(n)=\tau(n)/2+1; & A326388\\ \beta"(n)=3,\,\beta(n)=\tau(n)/2+2; & A326389\\ \beta"(n)=4,\,\beta(n)=\tau(n)/2+3; & To~create\\ \beta"(n)=k>=5,\,\beta(n)=\tau(n)/2+k-1>=\tau(n)/2+4 & To~create \end{array}
```

1.2.2. n oblong A002378

These integers satisfy $\beta'(n) = \tau(n)/2 - 2$.

$$\beta"(n) = 0, \ \beta(n) = \tau(n)/2 - 2 \colon A326378$$

$$\beta"(n) = 1, \ \beta(n) = \tau(n)/2 - 1 \colon A326384$$

$$\beta"(n) = 2, \ \beta(n) = \tau(n)/2 \colon A326385$$

$$\beta"(n) = k >= 3, \ \beta(n) >= \tau(n)/2 + 1 \colon A309062$$

2. $\tau(n)$ is odd ==> n is square A000290

2.1.
$$\tau(n) = 1 ==> n = 1$$

$$\beta(1) = (\tau(1) - 1)/2 = 0$$

2.2. $\tau(n) = 3 ==> n$ is square of primes A062312 \ {1} with $\beta'(n) = 0$. These integers satisfy $\beta'(n) = 0$.

$$\beta$$
"(n) = 0, β (n) = $(\tau(n) - 3)/2 = 0$: A062312 \ {1,121} = To create β "(n) = 1, β (n) = $(\tau(n) - 1)/2 = 1$: {121}

2.3. $\tau(n) = 5 ==> n$ is square of composites These integers satisfy $\beta'(n) = (\tau(n)-3)/2$.

$$\beta$$
"(n) = 0, β (n) = $(\tau(n)-3)/2$: To create β "(n) = 1, β (n) = $(\tau(n)-1)/2$: To create β "(n) = $k \ge 2$, β (n) not found such terms

Conclusion:

The four families that appear through this study: primes (1.1), composites nor oblong neither square (1.2.1), oblong numbers (1.2.2) and squares (2) realize a partition of the set $N^* = N \setminus \{0\}$.

For an integer n,

- the number of Brazilian representations with 2 digits $\beta'(n)$ depends only on $\tau(n)$, but,
- the number of Brazilian representations with 3 digits or more β "(n) depends only of this number n itself when $n = a * (b^n 1)/(b-1)$ with 1 <= a < b < n-1, b >= 2 and n >= 3, These integers with such a representation are in the sequence A167782.

These results come from detailed study of several sequences in OEIS.

Bernard Schott