Relations $\beta = f(\tau)$ in OEIS for squares A000290

Relations $\beta = f(\tau)$	Sequences of Integers in OEIS	Squares of Primes A001248 $\tau(p^2) = 3$	Squares of Composites A062312 \ {1} τ(m) >= 5	1 ²
$\beta(m) = (\tau(m)-3)/2$	A326707	$\beta(p^2) = 0$: A326708	β "(m) = 0: A326709	X
$\beta(m) = (\tau(m)-1)/2$	A326710	$\beta(p^2) = 1$: {121}	β "(m) = 1: A326711	{1}

The sequences in OEIS about relations $\beta = f(\tau)$ for squares are detailed in this array.

Definitions:

 $\tau(n)$ is the number of divisors of the integer n: A000005.

 $\beta(n) = \beta'(n) + \beta''(n)$ is the number of Brazilian representations of n: A220136.

 $\beta\text{'}(n)$ is the number of representations of n of the form aa_b , but not $11_b.$

 β "(n) is the number of representations of n with at least three digits. These integers with such a representation are in the sequence A167782.

When m > 1 is square, $\beta'(m) = (\tau(m)-3)/2$, so always $\beta(m) > = (\tau(m)-3)/2$.

Bernard Schott